C64DX SYSTEM SPECIFICATION

0 Design Concepts
U Hardware Specifications
O Software Specifications

Reguires ROM Version 0.9A.910228 or later.

PRELIMINARY

March, 1991

(< Commodore®

fred@cbmvax

(0
(i
¢

% L, N,

i s

F TG Sy

o 5 2
% 3 s

C64DX SYSTEM SPEC UPDATE 1

o

Printer queue: ips20
Stanted: . Wed May 108:22:58 1891. -

Digital Equipment Corporation , 7 :
I RI"YaY " . - PrintSarver 20

APPLICATION REVISIONS
NEXT AS3Y USED ON LTR DESCRIPTION DATE APPROVED
792722 C64DX PILOT PRODUCTION RELEASE L 03/01/81

COPYRIGHT 1991 COMMODORE BUSINESS MACHINES, INC,

Cb4DX SYSTEM SPECIFICATION

A.K.A.

Cé35

ALL RIGHTS RESERVED,

INFORMATION CONTAINED HEREIN IS THE UNPUBLISHED AND CONFIDENTIAL PROPERTY OF

COMMODORE BUSINESS MACHINES, INC.

_ USE, REPRODUCTION, OR DISCLOSURE OF THIS
? INFORMATION WITHOUT THE PRIOR WRITTEN PERMISSION OF COMMODORE IS PROHIBITED.

COMMODORE PART STATUS

292227-22 PRELIM

SIGN-OFF 'DATE TITLE !

DRWN | FRED BOWEN 06/13/83 ’ _
SYS FRED BOWEN 06/13/89 C64DX SYSTEM SPECIFICATION

TEST

REVISION A (PILOT PRODUCTION)

CoMP

SIZE A

SHEET 1 OF MANY

[e o

System Specification for C&5 Fred Bowen March 1, 1991

CCcC 666 555555
c c 6 5
c 6 5
c 6 55555 -
c 66666 5 5
C 6 6 5
c 6 6 S
c c 6 6 5 5
Ccccc 6666 5555

Copyright 1991 Commodore Buéiness Machines,_Inc.

All Rights Reserved.

This documentation contains confidential, proprietary, and unpublished
infermation of Commodore Business Machines, Inc. The reproduction,
dissemination, disclosure or translation of this information to others
without the prior written consent of Commodore Business Machines, Inc.
is strictly prohibited.

N Xxice is hereby given that the works of authorship contained herein

are owned by Commodore Business Machines, 1Inc. pursuant to U.S.-

Copyright Law, Title 17 U.S.C. 3101 et. seq.

This system specification reflects the latest information available
at this time. Updates will occur as the system evolves. Commodore
Business Machines, Inc. makes no warranties, expressed or implied,
with regard to the information contained herein including the quality,
pexformance, merchantability, or fitness of this information or the
system as described. : . '

This system specification contains the contributions of several people
including: Fred Bowen, Paul Lassa, Bill Gardei, and Victor Andrade.

Portions of the BASIC ROM code are Copyright 1977 Microsoft.

System Specification for Cé&5 " Fred Bowen o March 1, 1991

PPPPP RRRRR EEEEE L IIT M M III N N AADR RRRRR b4

P P R R E L I MM MM I NN N A A R R Y Y
P P R R E L I MMMM I NN N A+ A R R YY
P P R R E L I M MM I N NN A A R R Y
PPPPP RRRRR EEEE L I M M I N . NN AAAAAA RRRRR Y

F R R E L I M M I N N A A RR Y

P R R E L I M M I N N A A R R Y -
P R R E L I M M I N N A A R R Y

4 R R EEEEE LLLLLL III- M M III N N A A R R Y

Revision 0,2 (pilot release) January 31, 1991

At this time, Pilot Production, the C65 system-consists of either
revision 2A or 2B PCB, 4510R3, 4567R5 (PAL only), FO0l1B/C FDC,
and 018 DMAgic chips. There will be changes to all these chips
before Production Release.

This work is by:

Fred Bowen System Scftware- Ce5

Paul Lassa Hardware engineer- C65, DMAgic
Bill Gardei LSI engineer- 4567, FDC
Victor Andrade LSI engineer- 4510

Included are contributions by cqntraétors hired by Commodore for
the C65 project. These contributions include the DOS, Graphics,
Audio, and Memory management areas. '
S-yweral 4502 assembler systems are available:

VAX, Amiga, and PC based BSO-compatible cross assemblers.

PC based custom cross assembler by Memocom, compatible
with Memocom 4502 emulator and Mem-ulator systems.

Cl28-based BSO compatible cross assembler by Commodore.

Custom software support is available for the foilowiné logic analyzers:

Bewlett Packard HP655x A and B logic analyzers.

(%

System Specification for C65 - Fred Bowen. March 1,

1.0

2.0

Table of Contents

Introduction’

1.1

[y
FRYTY

1.5

System Concept
System Overview
System Components
System Concerns

1.4.1 C64 Compatibility
1.4.2 1581 DOS Compatibility
1.4.3 Modes of Operation

System Maps

1.5.1 Composite System Memory Map

Cé5 System Memory Map .
Cé5 System Memory Layout
Cé5 1/0 Memory Map

e
Lonon
LRT N

System Hardware

2.1

Ny R
LW

Keyboard

2.1.1 Keyboard Layout
2.2.2 Keyboard Matrix

External Ports & Form'Factor'
Microcontroller

2.3.1 Description .

2.3.2 Configuration 3
2.3.3 Functional Description
2.3.3.1 Pin Description
2.3.3.2 Timing Description
_ 2.3.3.3 Register Description
. 2.3.4 Mapper
2.3.5 Peripheral Control

2.3.5.1 1/0 Ports

. 2 Handshaking

. 3 Timers

4 TOD Clocks

5 Serial Ports

6 Fast Serial Ports
7 Interrupt Control
8 Control Registers

2.3.6 UART

.1 Control Registers
.2 Status Registerx
.3 Character Configuration
.4 Register Map

P

1991

L A

System Specification for C65 Fred Bowen March 1, 19981

Table of Contents (continued)

2.3.7 CPU
2.3.7.1 Introduction
2.3.7.2 CPU Qperation
2.3.7.3 Interxupt Handling
2.3.7.4 Addressing Modes
2.3.7.5 Instruction Set
- 2.3.7.6 Opcode Table

Video Controller

2.4.1 Description

2.4.2 Configuration

2.4.3 Functional Description
2.4.4 Programming

2.4.5 Registers

Disk Controller
2.5.1 Description

2 Configuration
.3 Registers
4

5

6

L

Lhunnnn

Functional Description’
Expansion port protocel
Timing diagrams

[ASESELSE N BN

Expansion Disk Controller (option)

2.6.1 Description
2.6.2 Expansion port protocel

DMAgic Controller

2.7.1 Description
2.7.2 Registers

RAM Expansion Controller (option)
2.8.1 Description ‘ '

Audiec Controller : I

System Specification for C65 . Fred Bowen. March 1, 1991

Table of Contents (continued)

3.0 Systém Software
3.1 BASIC 10.0

3.1.1 Introduction

2 List of Commands

3 Command Descriptions
4 Variables .

5 Operators

6 Error Messages

3,1.6.1 BASIC Error Messages
3.1.6.2 DOS Error Messages

3.2 " Monitor
3.2.1 Introduction
3.2.2 Commands and Conventions
3.2.3 Command Descriptions

3.3 Editor

3.3.1 Escape Sequences
3.3.2 Control Characters

3.4 Kernel

3.4.1 Kernel Jump Table

3.4.2 BASIC Jump Table
3.4.3 Editor Jump Tabld
3.4.4 Indirect Vectors
3.4.5 Kernel Documentation
3.4.6 BASIC Math Package Documentation
3.4.7 1/0 Devices
3.5 DOS
3.6 RS-232

4.0 Development Support

System Specification for CE5 Fred Bowen March 1, 1991

1.0 Introduction

This specification describes the requirements for a low-cost
8-bit microcomputer system with excellent graphic capabilitjes.

1.1 ~ System Concept

The C65 microcomputer is a low-cost, versatile, competitive product
designed for the international home computer and game market.

The C65 is well suited for first time computer buyers, and provides
an excellent upgrade path for owners of the commercially successful
C64. The C65 is composed of concepts inherent in the C64 and C128.

The purpose of the C65 is to modernize and revitalize the 10 year old-
Cé4 market while still taking advantage of the developed base of C64
software. To accomplish this, the C65 will provide a C64 mode of
operation, offering a reasonable degree of (64 software compatibility
and a moderate degree of add-on hardware and peripheral compatibility,
Compatibility can be sacrificed when it impedes enhanced functionality
and expandability, much as the C64 sacrificed VIC-20 compatibility.

It is anticipated that the many features and capabilities of the new
Cé5 mode will quickly attract the attention of developers and consumers
alike, thereby revitalizing the low-end home computer market. The C65
incorporates features that are normally found on today’s more expensive
machines, continuing the Commodore tradition of maximizing performance
for the price. The C65 will Provide many new opportunities for third
PAyty software and hardware developers, including telecommunications,
video, instrument control {including MIDI), and productivity as well

as entertainment software,

System Specification for C65 . Fred Bowen March 1, 1991

1.2 System Overview

o CPU -- Commodore CSG4510 running at 1.02 or 3.5 Mhz
o New iﬁstructions, including Rockwell and GIE extensions
0 Memory Mapper supporting up to 1 Megabyte address space -

o R6511-type UART (3-wire RS-232) device,-programmable baund
rate (50-56K baud, MIDI-capable), parity, word size, sync
and async. modes. XD/RD wire ORed/ANDed with user port,

o Two CSG6526~type CIA devices, each. with 2 I1/0 ports,
programmable TOD clocks, interxrval timers, interrupt contro’

o Memory

© RAM-- 128K bytes (DRAM) ‘
Externally expandable from additional 512K bytes to 4MB
using dedicated RAM expansion port.

o ROM -~ 128K bytes
. C64 Kernel and BASIC 2.2

C65 Kernel, Editor, BASIC 10.0, ML Monitor (like C128)
DOS v10- (1581 subset)
Multiple character sets: 40 and 80 column versions
National keyboards/charsets for foreign language systems
Externally expandable by conventional C64 ROM cartridges
via cartridge/expans.bn port using Cé64 decodes.
Externally expandable by additional 128K bytes or more
via cartridge/expansion port using new system decodes,

.0 bMA -- Custom DMAgic controller chip built-in
Absolute address access to entire B8MB system map,
including I/0 devices, both ROM & RAM expansion ports.
List~based DMA structures, can be chained together
Copy (up,down, invert), Fill, Swap, Mix(boolean Minterms)
Bold, Modulus (window), Interrupt, and Resume modes
Block operations from 1 byte to 64K bytes
DRQ handshaking for I/0 devices .
Built-in support for (optional) expansion RAM controller

4 m—

System Specification for C65 Fred Bowen . March 1, 1991

1.2 System Qverview (continued)}

o Video ~-- Commodore CSG 4567 enhanced VIC chip

o RGBA with sync on all colors or digital sync
o Composite NTSC or PAL video, separate chroma/luma
© Composite NTSC or PAL digital monochrome

o] RF TV output via NTSC or PAL modulator
o Digital foreground/background control (genlock)

o -All original C64 video modes:
40x25 standard character mode
Extended background color mode
320x200 bitmap mode
Multi-color mode
16 ceclors
8 sprites, 24x21

© 40 and 80 character columns by 25 rows:
Color, blink, bold, inverse video, underline attributes
o] True bitplane graphics:
320 % 200 x 256 (B-bitplane) non-interlaced
640 x 200 x 16* (4-bitplane) non-interlaced
1280 = 200 = 4= (2-bitplane) non-interlaced
320 x 400 x 256 (8-bitplane) interlaced
640 x 400 x 16* (4-bitplane} interlaced
1280 x 400 % 4% {2-bitplane} interlaced
? *plus sprite and boxrder colors
o] Ceolor palettes:

Standard 16-color C64 ROM palette .
Programmable 256-color RAM palette, with 16 intensity
levels per primary color (yeilding 4096 colors)

o Horizontal and vertical screen positioning verniers

o Display Address Translator (DAT) allows p;ogrammer to
access bitplanes easily and directly. ‘ -

o Access to optional expansion RAM

‘o Operates at either clock speed without blanking

o Aundio -- Commodore CSG8580 SID chips

0 Stereo SID chips:
Total of 6 voices, 3 per channel
Programmable ADSR envelope for each voice
Filter, modulation, audioc inputs, potentiometer
Separate left/right volume, filter, modulation control

System Specification for C65 Fred Bowen March 1, 1991

1,2 System Overview (continued)

o Disk, Printer support ~- ,

o FDC custom MFM controller chip built in, with 512-byte
buffer, sector or full track read/write/format, LED and
motor control, copy protection.)

o Built-in 3.5" double sided, 1MB -MFM caéacity drive

o Media & file systeﬁ compatible with 1581 disk drive

o} Supports one additional "dumb" drive externally.

o Standard CBM bus serial (all modes, about 4800 baud)

o Fast serial bus (C65 mode only, about 20K baud)

(o} Burst serial (C65 mode only, about 50X baud)

o External ports ~--
© 50~-pin Cartridge/expansion port (ROM cartridges, etc.)
o 24-pin User/parallel port (modem (1670), RS-232 seriél)
o Composite video/audio port (8-pin DIN)
° Analog RGB video port (DB-3)
o RF video output jack ?

o Serial bus port (disks (1541/1571/1581), printers, etc.)

o External floppy drive port (mini DINS)
o 2 DBSY control ports (joystick, mouse, tablets, lightpen)
o Left and right stereo audio output Ijacks

o RAM expansion port, built-in support for RAM controller

o Reyboard -- 77 keys, including standard C64 keyboard plus:
o Total of 8 function keys, F1-F16, shifted and nonshifted
© ° IAB, escape, ALT, CAPS lock, no scroll, help (F15/16)

o Power, disk activity LEDs
i © Reset button
© Power supply -- external, brick type

o +3VDC at 2.2A and +12VDC at .85A

System Specification for C65

1.3

Fred Bowen March 1, 1991

System Components
Microcontreoller: 4510 (65CED2, 2%6526, 6511 UART, Mapper, Fast serial)
Memory : 4464 DRAM (128K bytes) ‘
271001 ROM (128K bytes)
Video controller: 4567 (extended VIC, DAT, PLA)
Audio controllers: 6581 - {SID)

Memory control:

Disk controller:

KEYS
- USER PORT
CONTROL PORTS

41xx-FO18 (DMA)

41xx-F011 (FDC, supports 2 DSDD drives, MFM, RAM buffer)

EXPANSION PORT

‘1’ .I']—_MOD—> RFOUT :
—> COMP, CHROMA/LUMA
: > RGBA
s e R
E EXPANSIOR
d c MEMORY
4 D F S 5 R 4
5 M —~ D (=1 I pi O 5 p— =
1 A — ¢ — D D — M 6
0 ADR G 7 et =
1 NS D SR N —
C e _— — L
DAT : '
|] 126K
_ R L RAM INTERNAL
SERIAL BUS SPEAKERS i

FLOPPY PORT

System Specification for C65 Fred Bowen March 1, 1981

1.4 System Concerns

1.4.1 C64 Compatibility Issues

1.4.1.1 Software

C64 software compatibility is an important goal. To this end, when the
system is in "C64 mode" the processor will operate at average 1.02MHz
speed and dummy "dead” cycles are emulated by the processor. The C64
ROM is the same except for patches to serial bus routines in the kernel
(to interface built-in drive), the removal of cassette code (there is no
cassette port), and patches to the C64 initialization routines to boot
“C65 mode if there is no reason {eg., cartridges) to stay in C64 mode.

Compatibility with C64 software that uses previously unimplemented 6502
opcodes (often associated with many copy-protection schemes) or that
implements extremely timing dépendent "fast loaders” is iherently
impossible. Because the VIC-III timing is slightly different, pPrograms
that are extremely timing dependant may not work properly. Also,
because the VIC-III does not change display modes until the end of a
character line, programs that change displays based strictly upen the
raster position may not display things properly. The aspect ratio of
the VIC-III display is slightly different than the VIC-II. The use of
a 1541-1I1 disk drive (opticnal) will improve compatibility. C64 BASIC
"2.2 compatibility will be 100% (within hardware constraints). C1l28
BASIC 10 compatibility will be moderate {graphic commands are different,
some command parameters different, and there are many new commands).

1.4.1.2 Hardware *

(oY hardware compatibility is limited. Serial bus and control port
devices {mouse, Joysticks, ete.) are fully supported. Some user port.
‘devices are supported such as the newer (4-DIP switch) 1670 modems, but
there’s no 9VAC so devices which require 9VAC won’t function correctly.
The expansion port has additional pins (50 total), and the pin spacing -
is closer than the €64 (it’s like the PLUS/4). An adaptor ("WIDGET") v
will be necessary to utilize C64 cartridges and expansion port devices.

Furthermore, timing differences between some C64 and C6&5 expansion

port signals will affect many C64 expansion devices (such as the 1764).

- [}
1.4.2 DOS Compatibility

The built-in C65 DOS is a subset of Commodore 1581 DOS. There is no
track cache, index sensor, etc. To load and run existing 1l54l-based
applications, the consumer must add a 1541 drive to the system. Many
commercial applications cannot be easily ported from 1541/5.25" media
to 13581/3.5" media, due to copy pProtection or "fast loaders"™. Most

C64 applications that directly address DOS memory, specific disk tracks
or sectors, or rely on DOS job queues and timing characteristics will
not work with the built-in drive and new DOS. '

System Specification for C65

1.5
1.5.1

System Maps

Fred Bowen .

Composite System Memory Map

March 1, 1891

$0000

C64 CARTRIDGES €64 C65 RAM-L0O RAM-HI
3333 .
COLOR NYBS
$FB0O GAME KERNEL KERNEL '
& &
C2RD EDITOR EDITOR
SE000 C65 EVEN C65 ODD
COLOR NYRS COLOR NYRS BITPLANES . BITPLANES
I/O&CHARS I/O&CHARS R R R R R R
$D0O00
KERNEL
65 BASIC C65 VARS &
$C000 TEXT STRINGS
$2000-$FEFF $2000-$F7FF
APPLICATION .
, . BASIC
CARD _ HI BASIC
. GRAPHICS
$A000 .
APPLICATION DOS
(MAPPED)
CARD _ LOW >
C64 VAR &
$8000 STRINGS
MONITOR TEXT~$BFFF
(MAPPED)
$6000 C64 BASIC
TEXT
$0800~VARS
- BASIC .
$2000
- C65 SYSTEM C64 & C65
TEXT SCREENS DOS

System Specification for C6€5 . Fred Bowen - March 1, 1991

1.4.3

Operating Modes

The €65 powers up in the C64 mode. If there are no conditions present
which indicate that C64 mode is desired, such as the C= key depressed
or a C64 cartridge signature found, then C65 mode will be automatically
brought into context. Unlike the C128, "C64 mode" is escapable. Like
the C128, all of the extended features of the (65 system are accessible
from "Cé64 mode" via custom software. Whenever the system initiates C64

mode,

new VIC mode is always disabled except when the DOS is required.

System Specification for C65

Fred Bowen . ~ March 1,

1.5.2 C65 System Memory Map

MAPPER BANK

—

1M
768K
512K

256K
128K

A

$F,FFFF

$C, 0000 -

$8,0000

$4,0000
§2,0000
$0,0000

RAM

EXPANSION

512K BLOCK APPEARING

HERE IS DETERMINED BY
THE RAM EXPANDER CTLR
(Up TO 8MB TOTAL MAP)

RESERVED

FUTURE CARTRIDGES

SYSTEM ROMS

SYSTEM RAMS

SEE SYSTEM MEMORY
LAYOUT, BELOW

1991

System Specification for C6€5

1.

5.3 C65 System Memory_Layout

Fred Bowen.

March 1,

BANK 3
ROM-HI

Cés
KERNEL

RESERVED

GRAPHICS

BANK 0 BANK 1 BANK 2
’ \ RAM-LO RAM-HI ROM=-1L0
$FFFF
$F800 COLOR NYBS €64
KERNEL
$E000 BITPLANES
{EVEN) C64 CHRSET
$D000 BITPLANES
(0DD) INTERFACE
$CO00 R T N sereneaed
€64
BASIC
$A000 STRUCTURES STRINGS
2222 C65
CHRSET
$8000 feeeens seemes ad Leevrssannrennl
BASIC BASIC - RESERVED
. TEXT VARIABLES .
$4000 .
$2000
TEXT SCREEN DOS DOS
BUFFERS (MAPS TO
SYSTEM VARS & VARS 58000)

$0000

Cé5 BASIC

MONITOR

(MAPS TO
$6000)

1991

o RO=

What does this Mean?
variocus configurations (i.e.,

Cbo4 mode:

C65 mode:

C65 DOS mode:

Cﬁg Monitor:

System Specification for C65

$E000-SFFFF
$D000-$DFFF
$C000~SCFFF
SAQ00-SBFFF
$0002-$9FFF

SEO0QQ-SFFFF
$D000-SDFFF
$CO00-SCFFF

$8000~-SBFFF

$2000-$7FFF
$0002-$1FFF

SE0Q0-SFFEF
5D000-SDEFF
SC800-5CFFF
38000~-8C3FF
$2000-S7FFF
S0000-81FFF

SEQQQ0-S$FFFF
$D000~-SDFFF

-8C000-$CFFF

$8000-$RFFF
56000-S7FFF
50002~-55FFF

Fred Bowen March 1, 1981 .

Here is what the 64K memory map looks like in
as seen by the processor):

Kernel, Editor, BASIC overflow area.
I/0 and Color Nybbles, Character ROM
Application RAM

BASIC 2.2 .

RAMLO. VIC screen at $0400-S7FF. N
BASIC program & vars from $0800-%$9FFF

Kernel, Editor ROM code

I/0 and Color Bytes (CHRROM at $29000)
Kernel Interface, DOS ROM overflow area
BASIC 10.0 Graphics & Sprite ROM code
BASIC 10.0 ROM code

RAMLO. Vic screen at 350800-S0FFF

BASIC prgs mapped from $02000-SOFF00
BASIC vars mapped from $12000-$S1F7FF

Kernel, Editor ROM code _
I1/0 (CIA’s mapped out), Color Bytes
Kernel Interface :
DOS ROM code

[don’t care]
DOS RAMHI

Kernel, Editor ROM code
I/0 and Color Bytes '
Kernel Interface

{don’t care]
Monitor ROM code
RAMIO. |

It’s done this way . for a reason. The CPU MAPPER restricts the programmer to
one offset for each 32K-byte half of a 64K-byte segment. For one chuck of
ROM to MAP in another chuck with a different offset, it must do so into the
other half of memory from which it is executing. The 0S does this by never
mapping the chunk of ROM at $CO000-SDFFF, which allows this chunk to contain
-the Interface/MAP code and I/0 (having I/0 in context is usually desireable,
and you can’t map I/0 anyhow). The Interface/MAP ROM can be turned on and off
via VIC register $30, bit 5 (ROM@SCO00), and therefore does not need to be
mapped itself. Generally, OS functions (such as the Kernel, Editor, and DOS)
live in the upper 32K half of memory, and applications (such as BASIC or the
Monitor) live in the lower 32K half. For example, when Monitor mode is
entered, the 05 maps out BASIC and maps in the Monitor. Each has ready
access to the 0S5, but no built-in access to each other. When a DOS call is
made, the 05 overlays itself with the DOS (except for the magical 3C000 code)
in the upper 32K half of memory, and overlays the application area with DOS
RAM in the lower 32K half of memory.

System Specification for C65

Fred Bowen - March 1, 1991

1.5.4 C65 System I/0 Memory Map

$DFOO
$DEDO

$DD0O
SDCOO

$D800
$D700
$D600

$D440
$D400

$D300
$D200
$D100
$D0AD
$DO8O

$D000

$0000

10-2
I0-1

CIA-2
CIa-1

COLOR NYB

DMA

UART

SID (L)
SID (R)

BLU PALETTE
GRN PALETTE
RED PALETTE

REC

FDC

VIC-4567

4510

EXTERNAL I/0 SELECT
EXTERNAL I/0 SELECT

SERIAL, USER PORT
KEYBOARD, JOYSTICK, MOUSE CONTROL

COLOR MATRIX (*FROM $1F800-1FFFF)
*DMA CONTROLLER

*RS-232, FAST SERIAL, Nzﬁw KEY LINES
AUDIO CONTROLLER {LEFT)

AUDIO CONTROLLER (RIGHT)

*COLOR PALETTES (NYBBLES)

*RAM EXPANSION CTRL (OPTIONAL)
*DISK CONTROLLER
VIDEQ CONTROLLER

MEMORY CONTROL FOR C64 MODE
(this register is actually in
the VIC-4567 in the C65)

*NOTE: VIC must be in "new" mode to address these deyices

System Specificatien for €65 Fred Bowen March 1, 1801

2.0 C65 System Bardware

2.1.1 ZERevboard Layout

RUN ESC |ALT |cars| wo F1 | F3 | £5 | F7 F9 | F11| F13|BELP
STOP . 1OCK|SCRL F2 |'F4 | F6 | F8 F10| F12{ Fl14
<P ls s te |l || CLR |INST
1! {2 |3 |4 |5 |6 |7 |8 |9 |0 {4+ |- s |sove|pEL
TAB ' 7 | RSTR
o (w JE IR |T (Y lo |1 Jol|p. |e |+ |-~
CTRL | SHFT ' N } RETURN
ock| A | s o |[F |6 {8 g 1k {1 |: |; |=
C= |SHIFT j < | > | ? |SHIFT |CRSR
2z |x |¢c |v B |w |m |, / wR
SPACE ' o CRSR|CRSR|CRSR
LEFT | DOWN | RITE

Notes: 7

1/ The curser keys are special~- the shifted cursor keys appear as separate
keys, but in actuality pressing them generates a SHIFT plus the normal

cursor code, making them totally compatable with, and therefore functional
in, C6t4 mode. ' :

2/ There are a total of 77 keys,riwo of which are locking keys.

3/ The NATIONAL keyboards are similar, and their layout and,operation is
identical to their €128 implementation. =

System Specification for C65 Fred Bowen March 1, 1991

2.1.2 Reyboard Matrix

€0 [c1 Jc2 |e3 |ca {es |ee |¢7 | GND

PIN20|PIN19/PIN18{PIN17{PINL6|PINLS |PINI4|PINL3|PIN-4 |pIN-1
v v v v v v v v v
RO |« INS | # % ‘ } + £ t | NO-
PIN12 DEL | 3 5] 7 9 1 | SCRL
Rl |<——od RET | W R Y 1 P * | <=="| TAB
PIN11
R2 |< HORZ! A D G J L 1 | ctru| anT
PIN10 CRSR _ s
R3 |< F8 $: { 0 - | crR| " | mEIP
PIN-9 F7 4 6 8 HM | 2
R4 |< F2 2 ¢ B M > |rreeriseace| ri0
PIN-8 F1 . . ISHIFT{ BAR ! F9
RS < F4 S F H X = | e= | F12
PIN-7 F3 : Fl1
R6 < F6 | E T | v 0 6 n o | rua
PIN-6 F5 : A F13
R7 |< VERT|LEFT | x | v N < ? | RON | EsC
PIN-5 CRSR|SHIFT S| / | srop
/ (LOCKING)
SHIFT o
1OCK
CRSR ;
UP K1 PIN-21
4066
DECODER ,
CRSR ,
LEFT K2 PIN-22
‘ /
MMI < RESTR) L.
PIN-3
: / (LOCKING)
R8 |<—— e JCAPS ot L
PIN-2 _ LOCK

: 4
i
'

System Specification for C&5S , Fred Bowen . ' ©° March l;'lgéi-ff.‘

Keyboard Notes:

1/

2/

3/

4/

The
The
the

The
key

The

64 keys under CO through €7 occupy the same matrix position as in-the-

C/64, as does the RESTORE key. Including SHIFT-LOCK, there are 66 such keys.

extended keyboard consists of the 8 keys under the C8 output. Counting
CAPS-LOCKX key, there are 9 new keys. The C/64 does not scan these keys.

new CURSOR LEFT and CURSOR UP keys simulate a CURSOR plus RIGHT SHIFT

combination. | :

keyboard mechanism will be mechanically similar to that of the C1z8.

System Specification for Cg5 ' 'Fred Bowen. . ' Mafch'I, 1991§5'

2.2 Form Factor

EXPANSION SERIAL USER PORT “STEREO RGBA . RF COMPOSITE FAST DISK
PORT . _BOS {PARALLEL} - L R - VIDEG VIDEO. VIDE0 - PORT
[$ 1 J L J T T — et 8) L J [

—

POWER CONNECTOR

POWER SWITCH ‘ _ .
CONTROL PORT $2 R ' -

3.5
CONTROL PORT $1
: DISK DRIVE
RAM EXPANSION (BOTTOM) .

E RESET

EJECT

L]

Notes: . 2

l. Dimensions: about 18" wide, 8" deep, 2" high-

2. Disk unit faces forward.

System Specification for C§5

Fred Bowen March 1! 19915"

2.3 The CSG 4510 Microcontroller Chip

2.3.1 DescriEEion K

This specification desc
microcontroller unit fabrica
speed and low power consumpt

The IC is a fully stati
Processor . (65CE02), four ind
(AM/PM) time of day clocks e
I/0 (UART) channel with Prog
map function to access up to
for synchronous serial I/0,

2.3.2 Configuration

-
-

o
ribes the requirements for a single chip 8-bit
ted in 2U CMOS double-metal technology for high
ion. ;

¢ device that contains an enhanced 6502 micro-
ependent 16~bit interval timers, two 24~hour
ach with programmable alarm, full-duplex serial
rammable baud rate generator, built-in memory

1 megabyte of memory, 2 8-bit shift registers
and 30 individually programmable I/0 lines.,

- This IC device shall be confi

gured in a standard, 84

-pinrpiastic

chip carrier package.

[*** Pinou

t below will change for

AAAFSCSCSVVCCRERINRTT
2Z10LRNPNPCSOAEXSRMXXE
AQT1T2CSLPSTTOQIDDS
GIY 2 8 SERR* * T
2N ~ LT+ *
* * K *
11 8888877717
1098765432143210987¢65
A3 12 74 CTMHZ
A4 13 73 SRQDAT
as 14 72 SRQCLK
A6 15 71 SROATN
A7 16 > 70 PA2
A8 17 69 COL?
A9 18" 68 COL6
Al0 19 67 COLS
a1l 20 66 COL4
Al2 21 65 COL3
Al3 22 CSG 4510 64 COL2
Al4 23 .63 - COL1
AlS 24 62 COLO -
Al6 25 61 ROW7
Al7 26 60 ROWS6
Al8 27 59 ROWS
A19 28 58 ROW4
PSYNC 29 57 ROW3
AEC 30 56 ROW2
DMA* 31 S5 ROW1
NOIO 32 54 ROWO
333333344444444445555
345678901234567829.0123
NODDDDDDDVPRPPPPPPPEPP
OBBBBEBBBBCH/BRBBBBEBSEBC
§76543210COW012.345672
*
)

4510R5 **xx)

System Specification for C65 Fred Bowen

e 3ELE7 - e Do Ao

March 1, 1991

System Specification for C65

Fred Bowen . March 1, 1991.
2.3.3 Functional Description '
2.3.3.1 Pin Description
PIN PIN SIGNAL . .
NAME NUMBER . DIRECTION - DESCRIPTION
VSsS 1 IN This is the power ground signal (0 volts).
vCe 2,42 IN This is the power supply signal (+5 volts).
SPB, 3 1/0 The SPA and SPB. signals are 6pen-drain and bi-
SPA - 5 /0 directional, each with a 3K ohm (min.) passive
: pull-up. The SPA and SPE signals are the data
lines used by the two 8-bit synchronous serial
port registers. .In input mode, SPA and SPB are:
clocked into the device on the. rising edge of
the CNTA and CNTB clocks, respectively. 1In the
output mode, SPA and SPB change on the falling .
edge of the CNTA and CNTB clocks, respectively.
CNTR, ' 4 1/0 The CNTA and CNTB signals are open-drain and bi-
. CNTA, 6 1/0 directional, each with a 3K ohm (min.) passive
pull-up. These pins are internally synchro-
nized to the PHO clock and then used to clock
the synchronous serial registers, in input mode.
In output mode, each pin will reflect the clock
signal derived from the corresponding timer.
FLAGA/ 7 1/0 The FLAGA/ and FLAGB/ inputs are negative edge
FLAGB/ ' 8 IN sensitive input signals. A passive pull-up (3K
: ohm min) is tied on each of these pins. They
are internally synchronized to the PHO clock and
are used as general purpose interrupt inputs.
¥ Any negative transition on either of these

signals will cause the device to.start an
interrupt sequence, provided that the proper bit.

'is set in each of the interrupt mask registers.

The device-will drop the IRQ/ line to indicate
that an interrupt sequence is underway.

*** When the FAST SERIAL MODE is enabled the CNTA, SPA and *#*
*** FLAGA/ lines will not function as described above. See **%
*** section 2.5.6 for FAST SERIAL MODE description. : * R A

‘AQ0-A19 9 thru 28

1/0

o #
Address Bus - This is a 20 bit bi~directional

bus .with tri-state outputs. The output 6f each
address line is TTL compatible, capable of
driving two standard TTL loads and 55 pf. When
the AEC or DMA/ line goes low, the bus goes tri-
state. If AEC only is low, Al7, Al8 and 219
will each reflect the state of the 216 line.
During an I/0 access (I0/ is low), AO-A3, A8 and
A9 are used to select an internal 1/0 register.
If AEC is high, the bus will be driven by the
CPU and Al6-Al9 will point to a mapped memory
location (if MAP/ is low). -If memory is not
mapped (MAP/ is high), Alé-Al9 will be low.

System Specification for ces

PSYNC 29 coT
AEC 30 IN
DMA/ 31 . IN
{READY) Internal Signal
10/ 32 . IN

MAP/ - 33 ouT

‘the SYNC signal can be used to control either

‘.registers of the device, proyided memory is not
.being mapped by the CPU,)

Fred Bowen o March 1, 1991 - °

This output line is provided'tb‘identify those
cycles in which the IiCroprocessor is deing an

OP CODE fetch. The PSYNC line goes high during
PH1 of an OP CODE fetch and stays high for the .
remainder of that cycle. If AEC or DMA/ is low =
during the rising edge of PHl,in which pulse
PSYNC went high, the processor will stop in its
current state and will remain in the state until -
either AEC or DMA/ goes high. 1In this manner,

the AEC or DMA/ line to cause single instructien
execution. '

This input signal 'is the Address Enable Contro)
line. When high, the address bus, R/W are -
valid. When low, the address bus, R/W and MAP; -~
are in a high-impedance state except for Al7,

Al8 and Al9 each of which will be connected to

the Al6 line. o :

This signal is connected to a 3K passive pull- .
up. When this signal is low the address bus

and R/W will be tri-stated. This will allow
external DMA devices to assume contrel of the
system bus lines,. ' ,

This signal is generated internally via the

AEC and DMA/ lines. The READY signal goes high
when both AEC and DMA/ are high. It goes low

if either AEC or DMA/ goes low. The READY
signal alidws the user to single-cycle the
microprocessor on all cycles‘including write
cycles. A low state on either DMA/ or AEC
during the rising transition of .phase one (PH1)
will deassert the READY line and halt the micro--
Processor with the output address lines holding
the current address. This feature allows micro -
Processor interfacing with low speed MEMOrY as el
well as fast (max 2 cycle) Direct Memory Access
{DMA) . '

This input signal is used to select the internal

This signal is passively pulled-up (3 Kohm)
whenever DMA/ or AEC is pulled low. .
This output signal is used to indicate whether
©r not memory is being mapped by the device.

If the CPU is addressing a mapped memory region
the MAP/ line will go low and will inhibit the
I0/ line from selecting an internal register.
If the CPU is not mapping memory the MAP/ line
will be high and Al16-A19 will be kept low,

System Specification for C&5 -
34 thru 41

DB7-DBQ

R/W

PHO

pC/

PRDO~-PRD7 45 thru 52
PRBO-PRE7 54 thru 61
-PRAO-PRAT 62 thru 69

PRC2

PRC3

PRC46

43

44

53

70

71

72

1/0

1/0

IN

oUT

I/0

1/0 .

I/0

I/0

ouT

I/0

- Fred Bowen : March 1, 19915rr;ﬂf
D0-D7 form an 8 bit bi-directional data bus for—-
-data exchanges to and from the internal CPU (the

65CEQ2) and the device internal registers. It -

is also used to communicate with external peri- -

pheral devices. The output buffers are capable
of driving twe standard TTL loads and 55pf.

This signal is generated by the CPU to control
the direction of data transfers on the data bus.
This line is high except when the CPU is writing
to memory, an internal I/0 register or an :
external device. When the AEC or DMA/ signal is
low, the R/W becomes tri-state. '

This clock is a TTL compatible input used'forﬁ‘}.f
internal device operation and as a timing refer- -

ence for communicating with the system data bus. -
Two internal clocks are generated by the device;

phase two (PH2) is in phase with PHO, and phase

one (PH1) is 180 degrees out of phase with PHO. -

This output line is a strobe signal and is Cen- .

troniecs interface compatible. The signal goes

low following a read or write access of PORT D.

These are three 8-bit ports with each of their -
lines having a passive pull-up (min. 3K ochm)

as well as active pull-up and pull-down tran-
sistors. Each individual port line may be
programmed to be either input or output.

This line corresponds to PORT C, bit 2. It has
passive pull-up (min. 3k ohm) as well as active
pull-up and pull-down transistoers. The line can
be configured as input or output. PRCZ2 becomes

the external shift register cliock when the UART ..

is configured to operate in the synchronous

‘mode, otherwise PRC2 operates as normal.

This signal is an open drain output with a.
passive pull-up (1K ohm min). It corresponds to
bit 3 of PORT C. When this port bit is set as
an input, the PRC3 line is driven low; reading’
the port bit will give a high. If configqured as
an output, reading this port bit will not give
the status of the PRC3 line but the value pre-
viously written on the PORT C'data reg. bit 3.

This is an open drain bi-directional signal with

@ passive pull-up (1K ohm min). Bit 6 of PORT C

is always configured as an input; the bit will
give the status of the PRC46 line anytime the

. the port is read, regardless of what is written
" in the data direction register.

If bit 4 of PORT C is set as an input, the PRC46
line will be pulled low: reading the port bit
will give a high. 1If bit 4 is configured as

an output, PRC46 will be pulled low if bit 4 in
the port data register is high, otherwise the
PRC46 line will float to a high.

System Specification for CéS

PRC37

PREQ, PRE1

BAUDCLK

TEST

TXD

73 -

83, 84

74

75

76

77

I/0

I/0

IN .-

IN

OUT

IN

Fred Bowen _ Marcb'l,'iggiET?L

This is an open drain bi-directional signal with
a passive pull-up (1K ohm min). Bit 7 of PORT C
is always configured as an input; the bit will
give the status of the PRCS7 line anytime the
the port is read, regardless of what is written -
in the data direction register, e »
If bit 5 of PORT C is set as an input, the PRCS7
line will be pulled low; reading the port bit
will give a high. If bit 5 is configured as

an output, PRC57 will be pulled low if bit 5 in

the port data register is high, otherwise the
PRC57 line will float to a high. o

This a 2-bit port with each line having a
passive pull-up (min. 3K ohm) as well as active
Pull-up and pull-down transistors. Each indi-
vidual port line may be programmed to be eith:
input or output. ,

This input is a 7MHz clock used to drive the
UART Baud Rate Generator;, and is assumed to

be synchronous with the PHQ clock. This clock".

is also divided down to 1MHz to drive the
interval timers, and down to 10Hz to drive the
TOD timers. This clock is also used to time out
the POR and RESTORE (RSTR*) circuits. -

When this input goes to a high state, the device
will operate .in a test mode. The test mode will

allow the BAUDCLK dividers to be initialized and

the TOD and interval timers to be driven

directly b¥ the BAUDCLK clock, bypassing all the

dividers.

This is the UART transmit data output line.
The LSB of the Transmit Data Register is the
first data bit transmitted. The data trans-
mission rate (baud rate) is determined by the
value written to the Baud Rate Timer latches.

Y

This is the UART receive data input line and
is connected to a passive pull-up (1K ohm min) .

-The first data bit received is loaded into the

LSB of the Receive Data Register. The receiver
data rate must be the same ag that determined
by the value written to the Baud Rate Timer
latches. :

LI

hat

System Specification for C65

NMI/

IRQ/

78

79

I/0

I/0

Fred Bowen . March l,‘iQSi'

The NMI/ pin is an open drain bi-directional
signal. A passive Pull-up (3K ohms minimum) isg
tied on this pin, allowing multiple NMI/ sources
to be tied together. A negative transition on
this pin requests a non-maskable interrupt
sequence t0 be generated by the microprocessor.
The interrupt sequence will begin with the first
PSYNC after a multiple-cycle opcode. NMI/ inputs
cannot be masked by the Processor status "
register I flag. The two program counter bytes
PCH and PCL, and the processor status register
P, are pushed onto the stack. Then the Program
counter bytes PCL and PCH are loaded from memory
addresses FFFA and FFFR, respectively. _

NOTE: Since this interrupt is non-maskable,
another NMI/ can occur before the first is
finished. Care should be taken to avoid this.. -
The NMI/ line is normally off (high impedance)
and the device will activate it low as described
in the functional description. AEC and DMA/ mast

-be high for any interrupt to be recognized. -

The Interrupt Request line (IRQ/) is an open
drain bi-directional gignal. A passive pull-
up (3K ohms minimum) is tied on this pin, -
allowing multiple IRQ/ sources to be connected
together. This pin is sampled during PHZ and
when a2 negative transition is detected an inter-
rupt will be activated, only if the mask flag
{I) in the status register is low. The inter-
Tupt sequence will begin with the first PSYNC
after a multiple-cycle opcode. The two program

-counter bytes PCH and PCL, and the Processor

Status register P, are stored-onto the stack; .
the interrupt mask flag is set high so that no
further IRQ/’s may occur. At the end of this

cycle, the program counter low byte (PCL) will
be loaded from address FFFE, and the high byte

- {PCH) from FFFF, thus transferring program

control te the vector located at this addresses.
The IRQ/ line is normally off (high impedance)
and-the device will activate it low as described
in the functional descriptions AEC and DMA/ must
be high for any interrupt to be recognized, '

System Specification for C65

RESTR/

EXTRST/

RESET/

80

81

82

IN

ouT

I/0

-is deasserted.

. state during power-up, and will stay low until

Fred Bowen _ March 1, 1997 -

This input is tied to 2 3K ohm {min.) passive
Pull-up. A bounce eliminator circuit is used

on this pin to remove any bounce during its
falling transition, if the Pin is tied to a
contact closure. If the device sees a hegative -
transition on this pin, it will immediately
assert the NMI/ line to start a Non-Maskable In-
terrupt sequence. The device will ignore‘any
subsequent. transitions on the RESTR/ line until
4.2ms has elapsed, at which time the NMI/ line

This output is an open drain output with a min,
1K ohm pull-up, This pin will only go to a low

-9 seconds after VDD has reached its_operating e
voltage.

s

The Reset line (RESET/) is an open drain bi-
directional signal. A passive pull-up (1K ohm
minimum) is tied on this Pin, allowing any ex-
ternal source to initialize the device. A low
on RESET/ will instantly initialize the internal
65CEQ2 and all internal registers. All port -

zero (a read of the ports will return all highs
because of passive pull-ups): all timer control
registers are set to zero and all timer latches
to ones. 2All other registers are reset to zero.
During power-up RESET/ is held low and will go
high .9 seconds after VDD reaches the operating
voltage. 1If pulled low during operation, the
currently Jkecuting opcode will be terminated.
The B and Z registers will be cleared. The stack
pointer will be set to "byte" mode, with the = -
stack page set to pPage 1. The processor status
bits E and I will be set. When the high tran-
sition is detected,the reset seguence begins

on the CPU cycle. The first four cycles of the .
reset sequence do nothing. Then the program T
counter bytes PCL and PCH are loaded from memory’
addresses FFFC and FFED, ang nermal program .
execution begins, .

System Specification for C65

Fred Bowen

March 1, 1981

2.32.3.2 4510R3 Timinq Description
| - AEC, DMA
TAES—] +. |—TAEH f——TPWH ——|
) | | o PHQ
F——TPWL - \ S -
TAIS~] }— —° }—TAIH
: - NOIO,R/W :
VALID - ~A0-A19, NOMAP
. (INPUT) .
——TAOS }— - =—{ }—Ta0H . ‘
_ — —PSYNC, R/W
. VALID AOQ-Al19, NOMAP
— - o (OUTPUT)
TDIS |~ ~—— —{TDIH [~TDOS ~ k- — Tpor
| VALID j— VALID D0O-D7
- _ AEC, DMxr
— }—Taz — b—T22 |
ON : ON DO~D7,R/W,A0-A15 (AEC, DMA)
Al6-A19 (DMA)
| p—TCH ——]
? CIMHZ
F—TCL ~— — " F—TCCL
PHO
Param Descfiption MIN TYP MAX
Tpwh PHO clock high time 65 . 135 -
Tpwl PHO clock low time 65 , 135 -
Taes AEC, DMA setup to PHO falling 30 - -
Taeh AEC, DMA hold from PHO falling 10 - -
Tais - address input setup to PH(Q rising 20 - -
Taih address input hold from PHO falling 10 - -
Taos address output setup from PHO falling - - 50
Taoh address output hold from PHO falling 15 - -
Tdis data input setup to PHO falling 49 - -
Tdih data input hold from PHO falling 10 - -
Tdos data output setup from PHO rising - - 50
Tdoh ‘data output hold from PHO falling 30 - -
Taz address off from AEC or DMA falling 0 13 20
Tza address on from AEC and DMA rising 15 - 30
Tch CTMHZ clock high time 63 - -
Tecl - CTMHZ clock low time 65 - -
Tcel CIMHZ delay from PHO 0 - 50

System Specification f6£fC6S _ Fred Bowen

2.3.3.3 Register Descriptionl

This device contains a total of 41 I/0 peripheral registers which can
following conditions are met.
device must be in a non-mapped mode (MAP/ line is not asserted)
line must be in an active low state and the AQ0-23,

be accessed after the

must contain the valid address of the register
the state of the R/W
write (R/W is "low") cycle is under way.

AS A8 .- A3 A2 Al AQ - HEX ADD - REG SYMBOL

to be .accessed,
line will indicate whether a read {(R/W is “highf)“

Marchﬁiﬂ

In an access cycle, . the
A8 and AS address-‘lineg

' REGISTER NAME

‘In additish®

0 0 0 0 0 0 0x0 PRA
0 0 0 00 -1 0X1 PRB-

0 o0 0 0 1 o 0x2 DDRA

0 0 0 0 1 1 0x3 DDRB

0 o0 0 1 0 o - 0X4 TA LO
0 0 0 -1 0 1 _ 0X5S TA HI
o 0 0 1 1 ¢ 0X6 TR LO
0 0 0 1 1 1. 0X7 TB HI
0 0 1 0 00 0X8 | TODATS
0 0 1 0 071 0x9 - TODAS
0 .0 1 0 1 0 0xa TODAM
¢ 0 1 0 1 1 OXB TODAR -
0 0 11 0 0 0XC " SDRA -
0 0 11 0 1 _0XD - ICRA

cC 0 1 1 1 90 OXE - CRA

0 0 1 1 1 1 OXF CRB-

0 1 0 0 0 0 1X0 PRC -
¢ 1 0 0 0 1 T 1xa PRD
0 1 0 0 1 0. 1X2 DDRC
0 1 0 0 1 1 1%3 LARD
0 1 0 1 0 ¢ 1%4 . TC LO
0 1 0 1 0 1 1X5 TC HI
0 1 0 1 1 o 1X6° D LO
0 1 0 1 1 1 1X7° TD-HI
0 1 1 0 0 o 1X8 TODRTS
0 1 1 0 0 1 1x9 . TODBRS
0 1 I 01 0 | 1xa TODBM
0 1 1 0 1 1 1XB TODBH
0 1 . 1 1 0 0 1XC .SDRB

0 1 1 10 1 © 1XD ICRB

0 1 1. 1 1 ¢ 1XE CRC -

0 1 1 1 1 1 1XF CRD

1 0 6 0 0 ¢ 2X0 DREG

1 0 0 0 0 1 2x1 URSR

1 0 0 0 1. 0 2x2 URCR

1 0 0 0 1 21 - 2X%3 BRLO

1 0 C 1 0 0 2%4 BRHI
1 0 0 1 0 1 | 2% " URIEN -
1 0 0 1 1 ¢ 2X6 . URIFG
10 0 1 1 1 2X7 PRE

1 0 1 0 0 -0 2X8 ' DDRE

1 0 1 0 0 1 2X9 - FSERIAL

Peripheral Data Reg:AAvﬂ- .

" Peripheral Data Reg B
Data Direction Reg a . " }-
Data Direction Reg B ...
Timer A Low Register =

- Timer A" High Register.. -
Timer B Low Register ...

Timer B High Register

TODA 10ths Sec Register :| =~

TODA Seconds Register
TODA Minutes Register
TODA Hours-aM/PM Reg

SERIALA Data Register;g‘ '

INTERRUPTA Control
Control Register A
Control Register B

Reg., -

Peripheral Data. Reg C
Peripheral Data Reg D
Data Direction Reg C
Data Direction Reg D
-Timer C Low Register

Timer D Low Register IR
Timer D High Register
TODB- 10ths of Sec Reg. -
TODB Seconds Register - .
TODB Minutes Register
.TODB Hours-AM/PM Reg,
SERIALB Data Register .
INTERRUPTE Control Reg.
Control Register C - -
Contro} Register D

-Receive/Transmit Data Reg
UART Status Register

UART Control Register
Baud Rate Timer LO Reg.-
Baud Rate Timer HI Reg.
UART IRQ/NMI Enable Reg.
UART IRQ/NMI Flag Reg.
Peripheral Data Reg. E
Data Direction E

Fast Serial Bus Control

REGISTER ADDRESS ALLOCATION

TABLE 1

e,
Ny

gy

System Séécifiéation for CGS-'V

The functional descrlptlon of the memor

The Fast Serial reg;ster is descrlbed in sectlon 2.3.5.6.

2.3.3.3.1 REGISTER BIT ALLOCATION

D7 D6 DS D4 D3 - D2 p1 .-

n3ﬁ?réd?36wen L 5‘5??f March l,”199

y mapper follows in sectlon 2 3 4

- S

R/W REG NAME
R/W |0X0| PRA PA7 | Pa6_ | PAS | Pas4 | pa3 PA2 | PAl |'PAO-.
R/W j0X1 PRB - PB7 - | PB6 PBS. PB4 ,‘_PB3 ~| PB2" | pB1 . ‘PBO< :
R/W |0X2| DDRA . | DPA7 | DPA6 | DPAS | DPA4 | DPA3 DPA2 | DPAl | DPAO
R/W {0X3| DDRB DPB7- DPBéi DPBS | DPB4 | DPB3 | DPBZ | DPB1 ‘| DPBO -
READ|0X4| TA LO| | .TAL?7 | Tané .| Tars | Tawna | TAL3 | Taro TAL1 | 'TALO-
READ|0X5| TA HI g TAH7 | TAH6 | TAHS TAB4" | TAH3 | TAH2 | TAH1 |. TARO.
READ [0X6| TB LO| g\ TBL7 | TBL6 | TBLS TBL4 | TBL3 | TBL2 | TBLL'| TBLO
READ | 0X7| TB HI 8 TBH7 | TBH6 TBH5 | TBH4 | TBH3. TBH2 ‘| TBH1 | ‘TBHO
n — N _ -T | D RN E '§.Dh:§¥¥ﬁq(:T.
WRITE|0X4| TA 1O/ R | PAL7 | PAL6 | PALS | PAL4 | PAL3 | PAL2 CPALYY| PALO |
WRITE|OX5| TA HI g ' PAHT | PAH6 | PAHS | PAH4 | PAH3 | PAH2 | PARL | PAHO | |
WRITE|0X6| TB 1O g PBL7 | PBL6 | PBLS | PBL4 | PBL3 | PBL2 | PBLL “PBLO
WRITE|O0X7| TR HI g 'PBH7 AWPBHG.. PBHS PB4 PBH3 | PBH2. | PBH1 | PBHO
o T : o : ‘ ' o 3 s
READ [0QX8|TODATS g o | o | .o 0 | TA8 | TA4 TA2 _ | TAL“.f
READ |0X3|TODAS | | (*) O | SAH4 | SAH2 | ‘sAHl | SALS | sana | sar2 SaLl
READ |OXA|TODAM g (*) 0| MAH4 .| MAH2 -| MAH1 | MALS | MAL4' MAszﬂ-MaLl"'
READ |OXB|TODAH § APM | 0 | 0 | Ham HALS | HAL4 -| BAL2 | HALL
: (*) 'IN TES? MODE: WILL READ DIVIDER STAGE OUTPUTS'
T - . g b, \
WRITE |0X8|TODATS| © 0 0 0 .0 TA8 | TA4 TA2 TAl
WRITE | 0X9 |TODAS ° 0 | san4 | sam2 | sam1 | savs | san4 | sar2 | sari
WRITE | OXA | TODAM i 0 MAH4 | MAH2 | MAH1 | MAL8 | MAL4 | MAL2 | MALL
WRITE | 0XB | TODAH g APM | 0 0 HAH BALS | HAL4 | HAL2 | HaLl
| g IF CRB ALARM BIT=1 , ALARM REGISTER 1S WRITTEN
s IF CRB ALARM BIT=0 , TOD REGISTER IS WRITTEN

REGISTER BIT ALLOCATION
TABLE 2

System Specification for C65 - = - Fréd_:éo@ég IR March 17

R/W REG MAME D7 . D6 . DS D4 D3 D2

R/W |OXC| SDRA | SRA7 | SRA6 | SRAS | SRA4 SRA3 | SRA2

READ | XD ICRA IRA { 0 | o | riea| spa | atmmal

- (INT DATA) [|0 S Y e

WRITE(0XD| ICRA - |as/c— | -- '-- | FLGA | SPA .| airma

| (INT MASK) | RO T R e
{ R/W |0XE| CRA TODA ['SPA | TMRA | LOADA| RUN-a| .ouT-a|
| IN | MODE |INMOD MODE | MODE
R/W [0XF| . CRB |ALARM |TIMERB INMODE| LOADE| RUN-B| OUT-B|.
g (TODA) | CRB6 ~CRB5 | ' | MODE | MODE

READ|1X0| PRC :'_ pc7 PC6 | ees | pes | B3 | ez }"gcil

R/W |1X1| PRD PD7 °) PD6 | PD5 - | PD4- | PD3 | PD2 . | PD1.

_R/W |1X2| DDRC | DPCT | DPC6 | DPCS | DPCA” 'DPC3:| DpPC2 | DPC1

R/W |1X3| DDRD | DPD7 | DPDé | DEDS | DPD4 | .DED3 | DPD2 DPD1

READ [1X4| TC LO TCL7 | TCL6 | TCL5 | TCL4 | TCL3 | Tcnz | TowLi .

READ|1X5| TC #I] 1 | TeH7 | rcHé | TCHS | TCH4 | TCH3 | TcH2 | Teml

READ|1x6| 0 10| E TDL7 | TDL6 | TDL5 | TDL4 | TDL3 | TDL2 | TDLL

READ|1x7| 0 HI| | | 707 TDH6 | TDE3 | TDH4 | TDH3 | TDH2 .| TDH1
WRITE|1X4| TC LO| R | PCL7 | BPCL6°| PCLS | PCL4 | PCL3 | per2 | pCLi -
WRITE|1xS| TC RI| S | PoRo PCH6 | PCHS | PCH4 | PcH3 | pcH2 | pcHL
WRITE|1X6| 70 Lo| A | o7 | PDL6 | PDL5 | PDL4 | PDL3 | PDL2 | PDL1’

WRITE |1x7| TD HI g | PpBT | PDHE | PDHS | PDH4 | PDH3 | PpH2 | PDHL

- . - _ T

READ |1X8|TODBTS| 0 | - 0 0 | 0o} o T8 | TB4 |1TB2 | TBI
READ |1x3|ToDBS | (*) O | sBA4 | SBH2 | sBEL | SBLS | sBL4 | sBL2 | smLl
READ |1xa|ToDEM | 1 | © MBH4 | MBH2 | MBH1 | MBL8 | MBL4 | MBL2 | MBLL
READ |1xXB|TODEH g BPM | 0 0 HBH HBL8 | HBL4 | HBL2 | HBRL1

® (*) IN TEST MODE: WILL READ DIVIDER STAGE OUTPUT

REGISTER BIT - ALLOCATION
TABLE 2 (CONT’D)

System Specification for C65° | Fred-Bowen =
R/W REG - NAME 7. D6, D5 D4 - .p3
WRITE|1X8{TODBTS| T [o0 . 0 - | 0 0 TBS
0 —_ '
WRITE |1X9|TODBS [D.|{ O SBH4 | SBH2 | SBH1 | SBLS
I , _ .
WRITE|1XA{TODBM [A | 0 . | MBH4 | MBH2 | MBH1 | MBLS
T : ' :
WRITE|1XB|TODBH | ¢ | seM | 0 0" { HBE ' | HBL8S | ®BLZ | HBL2 .
I e B B R R |
E-| IF CRD ALARM-BIT=1 -, ALARM REGISTER IS WRITTEN '
S | IF CRD ALARM BIT=0 , TOD REGISTER IS WRITTEN
R/W.|1XC| SDRB - | SRB7 | 'SRB6 | .SRBS.'| SRB4 | SRB3 | SRB2 | SRBI .
READ|1XD| ICRB - | IRB [0 ' |0 | FLeB | spB. | aLrMB| D |
_ (INT DATA) | . [v p [T e T T
|WRITE{1XD| ~ICRB [BS/C” |* =~ | ‘-~ .| FLGB | SPB: | ALRMB| D .
| (INT MASK) SRR A S ;
R/W [1XE| CRC "TODB | SPB | T™RC | roapc| run-c| our-c PRD6 |
. IN | MODE |INMODE|. . | MODE | MODE | ON -|.
R/W |[1XF| CrD ALARM |TIMERD INMODE| LOADD| RUN-D| ouT-D| PRD7
: (TODB) | CRD6 - CRDS MODE | MODE | ON
| "READ | 2X0 DREG RCV7 | RCV6 | Rovs | Rovd | acva' | Rovz | mevi
(RECEIVE DATA REG) : R
|wRITE | 2%0 DREG XMTT | XMT6 | XMTS | XMT4 | XMT3 | xMT2 | xMT1 | xmr0. | -
(TRANSMIT DATA REG), . - , . S
READ | 31 URSR [TDONE | EMPTY| ENDT | IDLE | FRME | PRTY | OVR | FULL | 4 :
WRITE|2x1 URSR - -~ | -~ | evpT | ID2E | -- | -- -- S B
R/W |2X2| URCR XMITR| RCVER| UART MODE CHAR LENGTH |PARITY|PARITY| ©|.-
: EN | EN | UMl UMO | CHl - CHO EN | EVEN .
R/W _|2X3| BRLO" | BRL7.| BRL6 | BRLS | BRL4 | BRL3 | BRL2 | BRLL | BRLO ;
R/W |2X4 BRHI BRH7 | BRH6 | BRHS | BRH4 'BRH3 ‘| BRH2 | BRHL | BRHO
s N + .
R/W |2x5 URIEN - | XDIRQ| RDIRQ| XDNMI| ROMMI| -- “[. -- - -
READ | 2X6 URIFG | XDIRQ| RDIRQ| XDNMI| RONMI| —-' [& -- -- --
R/W |2X7| PRrE - - | -- -- -= - PE> PEOQ
R/W [2X8. DDRE -] == - —- ~- -- DPEl1 | DPEOQ
R/W |2X9] FSERIAL |*DMODE|*FSDIR| -- - - -- -- --

REGISTER BIT ALLOCATION
TABLE 2 (CONT’'D)

Lot s e e e e e e s e e s r e o

'5System'3peqifi¢ation for €65

1‘1?i567§dﬁen- - ‘Marchi1i

- 2.3.4 Memorj Mapper

The microprocessor core is actually a C4502R1 with some additional’
instructions, used to operate the memory mappex. - e

-The former AUG (augmeht) opcode has been changed to Map (mapper) , =
- and the former NOP'(no—opera;ion1_has.been‘changed tonEOM;(end-of—mapping
- "sequence} .) X o ; R

- The 4510 memory mapper allows the microprocessor to access up to.1
megabyte of memory. Here’s how. The . 6502 microprocessor can only access: 64K
bytes of memory because it only uses addresses of 16 bits. The 4502 is no. - .
different, nor is the 4510. But the 4510 memory mapper allows these addresses
o be redirected to new physical addresses to access different Parts of a i
much larger memory, within the 64K byte confinement window. O

: The 64K-ﬁindow has been divided into eight blocks}rand.two regions,
with four blocks in each region. Blocks 0 through 3 are 'in the "lower" -
region,,and.blocks»4-through 7.are'in_the_“upper“ region, as shown..., " !

. - FFEF

BLK 7
— E000
: BLK 6 o
UPPER REGION 4 - C000
- BLK 5
A000
BLK 4
S — 8000
BLK 3
— 6000.
‘ . BLK 2 ?
LOWER REGION - . ~—1 4000 . -
. .BLK 1 ' o i
‘ —2000 _ : , -
: BLK 0 -
L 0

Each block can be .programmed to be "mapped", or "non-mapped" via
bits in the mapper’s. "mask" ‘registers, NON-MAPPED means, simply, address
out equals address in.” Therefore, there are still only 64K bytes of non-
mapped memory. MAPPED means that address out equals address in plus some
offset. The offset is programmed via the mapper’s "offset" ,registers. ‘
There are two "offset” registers. One is for the lower region, and one is-
for the upper region. ' ' : '

: The low-order 8 addresses are never mapped. The offsets are only
added to the 12 high-order addresses. This means the smallest unit you can
map to is 256 bytes, or one page. - :

The 4510 has an output (NOMAP) which lets the outside world know :
when the processor is accessing mapped (0) or non-mapped (1) address. This
- is useful for systems where you may want I/0 devices to be at fixed {non-
mapped) addresses, and only memory at mapped addresses.

System Specification for €65

It is possible, and likely, to h
the same physical address. And, with
addresses will match unmapped ones.
to tell whether the address is mapped

T

To program the mapper, the o
and Z registers with the following

pera
inf

Fred Bowen March 1, 1991'
ave mapped, and unmapped memory at

offset registers set to zero, mapped

he only difference is the NOMAP ‘signal

or unmapped.

ting system must load the A, X, Y, -
ormation, and execute a MAP opcode,

Mapper Register Data
7 6 5 4 3 2 1 0 BIT

LOWER LOWER LOWER | LOWER LOWER LOWER LOWER LOWER A

QOFF15 CFF14 OFF13 COFF12 OFF1l1 QFF10 OFF9 OFF8

MAP MAP -MAP MAP LOWER LCOWER LOWER | LOWER-| X
1| BLK3 BLK2 BLK1 BLKO OFF18 OFF18 OFF1l7 OFFl6

UPPER UPPER UPPER | UPPER UPPER UPPER UPPER UPPER Y

CFF1i5 OFF14 OFF1l3 QFF12 OFF11 OFF1l0 OFFS QFF8

MAP MAP MAP MAP UPPER UPPER UPPER UPPER Z

BLK7 BLX6 BLKS BLK4 OFF19 QFF18 CrF17 OFFlé

After exscuting tha MAD goeonds, 21l interrusts é:e inhibited. This

S,
i5 Zone to allow the cperating systex
without fear of getting an interrupt.

proper stack-pointer is set will cause

to an undesired area.

Upcn ceom
the intex
application software may execute NOPs

pleting the mapping sequence,
Apt inhibit by executing a EOM (fo

L complete a mapping segquence
An interrupt occurring before the
return address Zata to bz written

the operating system must remove
rmexrly NOP) opcede. Note that

with ne effect.

System Specification for Ce5 Fred Bowen - March 1, 1991

2.3.5 Peripheral Control Functions
2.3.5.1 1/0 Poits

Ports A, B and D each consist of an 8-bit Peripheral Data Register (PR) -
and an 8-bit Data Direction Register (DDR). Port E consists of a 2-bit PR
and DDR registers. If a bit in the DDR is set to one, the corresponding
bit in the PR is an output, if a DDR bit is set to a zero, the corresponding
PR bit is defined as an input. On a READ, the PR bit reflects the informa-
tion present on the actual pert pins (PRAO—PRA?,PRBO;PRB7{PRCZ,PRDD-PRD7}
PREO~PRE1l) for both input and output bits., A1l ports have passive pull-up
devices as well as active pull-ups, Providing both CMOS and TTL compatibi-
lity. In addition to normal I/0 operation, PRB6,PRB7,PRD6 and PRD?7 also
Provide timer output functions (refer to Control Register section, 2.5.8).

Only bit PC2 and DPC2 of PORT C meet the above description. The other
bits function as described in the following.

PCO,PCl These signals a#e simply a register bits. When read, they will-
reflect the value pPréviously written to the PRC register,

PC4 This bit is a "high™ if it’s configured as input (DPC4 is a
"low™"). _
If configqured as output (DPC4 is a "high"), the bit will
reflect its previous written value when PORT C is read. Then
the PRC46 pin is pulled "low™ if PC4 is "high"; otherwise, ’
PRC46 is pulled-up through passive resistor.

PC3 This bit is a "high” if it’s configured as input (DPCS is a
“J.OW"). -
If configured as output (DPC5 is a "high™), the bit will
reflect its previous written value when PORT C is read. Then
the PRCS7 pin is pulled "2ow" if PC5 is "high"; otherwise,
PRC37 is pulled-up through passive resistor.

PC6,PC7 These bits are always configured as inputs. When PORT C (PRC)

is read, PC6 and PC7 will reflect the values on the PRC4§ and
PRC57 pins, respectively.))

2.3.5.2 Handshaking

Handshaking on data transfers can be accomplished using the PC/ output
Pin and either the FLAGA/ or FLAGB/ input pin. The PC/ ljine will go low
and stay low for two cycles, two cycles after g read or write to PORT D.
This is required to meet Centronics Parallel Interface specs. The PC/ line
can be used to indicate "data ready" at PORT D or "data accepted" from PORT
D. Eandshaking on 16-bit data transfers (using either PORT A or B and then
PORT D) is possible by always reading or writing PORT A or PORT B first.
The FLAG/ lines are negative edge sensitive inputs which can be used for
receiving the PC/ output from other 4510 devices, or as general purpose
interrupt inputs. A negative transition on FLAGA/ or FLAGB/ will set the
FLAGA or FLAGB interrupt bits, respectively,

System Specification for C&5 Fred Bowen © March 1, 19%91

2.3.5.3 Interval Timers (Timer A, Timer B, Timer C, Timer D)

BEach interval timer consists of a 16-bit read-only Timer Counter and a
16-bit write-only Timer Latch (prescaler). Data written to the timer are
latched in the Timer Latch, while data read from the timer are the present
contents of the Timer Counter. The timers can be used independently or
linked in pairs for extended operations {(TIMER A may be linked with Timer B:
TIMER C may be linked with TIMER D). The various timer modes aliow genera-
tion of long time delays, variable width pulses, pulse trains and variable
frequency waveforms. Utilizing the CNT inputs, the timers can count exter-

.nal pulses or measure frequency, pulse witdth and delay times of externzl
signals. Each timer has an associated control register, providing indepen-
dent control of the following functions (see bits functional description in
section 2.5.8 below):

Start/Stop - -—- - —

Each timer may be started or stopped by the ﬁicroprocessor at any time
by writing to the START/STOP bit of the corresponding control register (CRA,-
CRB, CRB or CRC).

PRB, PRD On/Off-

Control bits allow any of the timer outputs to appear on a PORT B or
PORT D cutput line {(FPRB6 for TIMER A, PRB7 for TIMER B, PRD6 for TIMER C
and PRD7 “for TIMER D}. Note that this funtion overrides the DDRB control

-

pit and ferces the appropiats PR n~v P2 lins <2 == an output.
Toggle/Pulse

Control bits select the ouputs applied to PORT B and PORT D. On every
“imer underflow the ouput can either toggle or ¢ -~=zrals “J“fle positive
rulse of one cycle duration. The Toggle output is set high whenever the

appropiate timer is started and is set low by RESET/.
?
One-Shot /Continuous

Control bits select-either timer mode. In one-shot mode, the timer
will count down from the latched value to zero, generate an interrup:t,
reload the latched wvalue, then stop. In continuous mode, the timer will
count from the latched value to zero, generate an interrupt, reload the
latched value and repeat the procedure continucusly.

Force Load

*
: A strobe bit allows the timer latch to be loaded into the timer
counter at any time, whether the timer is running or not.

Input Mode

Control bits allow selection of the clock used to decrement the timer.
TIMER A or TIMER C can count C1MHZ clock pulses or external pulses applied
to the CNTA or CNTB, respectively. The CIMBZ clock is obtained after in-
ternally dividing the C7MHZ by a factor of seven.

TIMER B can count CIMHZ clock pulses, external pulses applied to the
CNTA input, TIMER A underflow pulses or TIMER A underflow pulses while the
CNTA pin. is held high.

System Specification for C65 Fred Bowen ‘ March 1, 1991
TIMER D can count CIMHZ clock pulses, external pulses applied to the
CNTB input, TIMER C underflow pulses or TIMER C underflow pulses while the
CNTB pin is held high.

T _ _
force load or following a write to the high byte of the Prescaler while the °
timer is stopped. 1If the timer is running, a write to the high byte will
load the timer latch, but not reload the counter. .

.2.3.5.4 Time of Day Clocks (TODK, TODB)

The TODA and TODB clocks are special purpose timers for real-time -
applications. Each clock, TODA or TODB, consists of a 24-hour {(AM/PM) clock
with 1/10th second resolution. Each is organized into four registers:_lOths
of seconds {(TODATS, TODBTS), Seconds (TODAS, TODBS), Minutes {TCDaM, TODBM)
and Hours (TODAH, TODBH). The AM/PM flag is in the MSB of the Hours ' :
register for easy testing. Each register reads out in BCD format to simpl
fy conversion for driving displays, etc. Each TOD requires a 10gZ clock
input to keep accurate timing. This 10HZ clock is generated by dividing
the C7MHz clock input by a factor of 102273 for NTSC (60Hz) applications, or
a factor of 101339 for PAL (50Hz) applications. The divider ratio is
selected by the TODA IN and the TODB IN bits of the Control Registers, CRA
and €RC, respectively (see 2.5.8), .

In addition to time—keeping, & programmable ALARM isg Provided for gene-
rating an interrupt at the desired time, from either of the TOD clocks. The
ALARM registers registers are located at the same addresses as the corre-
sponding TODA and TODR registers. Access to the ALARM is governed by bit 7
in the Control Registers CRB and CRD. The ALARM registers are write-only;
any read of a2 TOD address will read time regardless of the state of the
ALARM access control bits. .

reading of -each TOD. A TOD is automatically stopped whenever a write to the
corresponding Hours register occurs. The TOD will not start again until '
after a write to the proper 10ths of seconds register. This assures that a
TCOD will always start at the desired time. Since 2 carry from one stage to
the next can occur at any time with respect to a read operation, a latching
function is included to keep all Time of Day information constant during a -
read sequence. All four registers of each TOD latch on a read of the
corresponding Hours register and remain latched until after a read of the
corresponding 10ths of second register. A TOD continues to count when the
cutput registers are latched. 1f only one register is to be read, there is
no carry problem and the register can be read "on the fly", provided that
any read of the Hours register if followed by a read of the proper 10ths of
seconds, to disable the latching.

2.3.5.5 Serial Ports (SDRA, SDRB)

Each serial port is a buffered, 8-bit synchronous shift register sys-
tem. A control bit (CRA SPa bit, CRC SPB bit) selects input or cutput mode
for either the SDRA or SDRB port.

In input mode, data on the SPA or SPB pin is shiftegd inte the corre-
sponding shift register on the rising edge of the signal applied to the CNTA
or CNTB pin, respectively. After 8 CNTa pulses , the data in the shift
register is dumped inte the SERIALA Data Register (SDRA) and an interrupt is

]

System Specification for C63 Fred Bowen ' March 1, 1991

generated, SPA bit is set in register ICRA. After 8 CNTB pulses , the data
in the shift register is dumped into the SERIALB Data Regzster (SDRB) and an
interrupt is generated, SPB bit is set in register ICRB.

In the cutput mode, TIMER A is used for the baud rate generator of
serial port A, Timer C for serial port B. Data is shifted on an SP pin at
half the underflow rate of the TIMER used. The maximum baud rate possible
is C1MHz divided by four, but the maximum useable baud rate will be deter-
mined by line loading and the speed at which the receiver responds to input
data. Transmission will start following a write to Serial Data Register
(provided the proper TIMER used is running and in continuous mode). The
¢clock signal derived from TIMER A would appear as an output on the CNTA pin;
the one from TIMER C would appear otn the CNTB pin. The data in the Serial
Data Register will be locaded into its corresponding shift register then
shift out to the SPA or SPB pin when a CNTA or CNTE pulse occurs, respec-
tively. Data shifted out becomes valid on the falling edge of its CNT clock -
and remains valid until the next falling edge. After 8 CNT pulses, an
interrupt is generated to indicate more data can be sent. If the Serial
Data Register was loaded with new information prior to this interrupt, the
new data will automatically be locaded intc the shift register and transmis-
sion will continue. If the microprocessor stays one byte ahead of the shift
register, transmission will be continuous. If no further data is to be
transmitted, after the 8th CNT pulse, CNT will return high and SP will
remain at the level of the last data bit transmitted. SDR data is shifted
out MSB first and serial input data should also appear on this format.

The bidirectional capability of each of the Serial Ports and CNT clocks
allows many 4510 to be connected to a common serial communication bus on
which one Serial Port would act as a master, sourcing data and shift clock,
while the other Serial Port (and all other pdxts from other 4510 devices)
woulcd Jmct as slaves. All the CNT and SP outputs are open drain to allow
such a common bus. Protocol. for master/slave selection can be transmltted
‘over the serial bus, or via dedicated handshaking lines.

System Specification for C65 Fred Bowen March 1, 1991

2.3.5.6 FAST SERIAL MODE

The FAST SERIAL logic consists of a 2-bit write-only register, which
resides in location 0001 (hex). This register may only be accessed by the
CPU if neither the AEC or DMA/ line is low. Upon reset, both bits in the
register are forced low which allows the device to operate as nocrmal (the
CNTA, SPA, PRC57 and FLAGA/ lines will not be affected).

Bit 7 of the FAST SERIAL register is the Fast Serial Mode disable bzt
(DMODE* blt) .

Bit 6 of the FAST SERIAL register is the FSDIR* bit. When the DMODE*#
bit is set high, the FSDIR* bit will be used as an output to control the
fast serial data direction buffer hardware, and as an input to sense a fast
disk enable signal, This function will affect the CNTA, SPA, PRCS7 and
FLAGA/ lines as summarized in the following table.

DMODE* FSDIR* " FUNCTION
4] 0 Fast Serial mode is disabled.
X 1 Both the FLAGA/ and the PRCS57 lines will behave

as outputs. The FLAGA/ cutput will reflect the
state of the CNTA pin, whereas the PRC57 output
will reflect the state of the SPA pin.

1 0 Both the CNTA and SPA lines will behave as
cutputs. The CNTA cuput will reflect the state
of the FLAGA/ pin, whereas the S5PA output w;ll
reflect that of the PRCS57 pin.

System Specification for C&5 Fred Bowen - March 1, 1991

2.3.5.7 Interrupt Control Registers (ICRA, ICRB)

These registers control the following sources of interrupts:

i. Underflows from TIMER A, TIMER B, TIMER C and TIMER D
ii. TODA ALARM and TODB ALARM. i

iii. SERIALA and SERIALB Port full/empty conditions.

iv. FLAGA/ and FLAGBR/ low transitions.

The ICRA and ICRB registers each provides masking and interrupt infor-
mation. ICRA and ICRB each consists of a write-only MASK register and a
read-only -DATA register. Any interrupt will set the correspeonding bit in
the DATA register. Any interrupt which is enabled by the MASK register will
set the IR bit (MSB) of its corresponding DATA register and bring the IRQ/
Pin low. In a multi-chip system, the IR bit (IRA of ICRA or IRB of ICRB)
can be polled to detect which chip has generated an interrupt request. The
interrupt DATA register is cleared and the IRQ/ line returns high fellowing
a read of the DATA register. Since each interrupt sets and interrupt bit -
regardless of the MASK, and each interrupt bit can be selectively masked to
pPrevent the generation of a processor interrupt, it is possible to intermix
Polled interrupts with true interrupts. However, polling either of the IR
bits will cause its corresponding DATA register to clear, therefore, it is
up to the user to preserve the information contained in the DATA registers
if any polled interrupts were pPresent.

Both MASK (ICRA, ICRB) registers provide convenient control of indivi-
dual mask bits. When writing to a MASK register, if bit 7 of the data
written (corresponding to AS/C in ICRA, or BS/C in ICRB) is a ZERO, any
mask bit written with a one will be cleared, while those bits written with
& zerc will be unaffected. 1In order for an interrupt flag to set the IR bit

and generate an Interrupt Request, the corresponding MASK bit must be set in
the corresponding MASK Register.

2

System Specification for Cg5 Fred Bowen . March 1, 196:

2.3.5.8 Control Registers (CRA, CRB, CRC, CRD)

CRA (OXE):
BIT Bit Name

0 STARTA

1 PRB6 ON

2 OUT-A MODE
3 RUN-A MODE

4 LOADA

5 TMRA INMODE
6 SPA MCDE
7 TODA IN

CRB (0XF):
BIT Bit Name

(Bits 0-4 of the CRB register o
register, except that function
the output of TIMER B on PRB7).

5,6 TIMERB

Funcﬁion

1=START TIMER A, O0=STOP TIMER A. This bit is automat-
ically reset when TIMER A underflow occurs during one-
shot mode. : :

1=TIMER A output appears on PRB6, 0=PRB6 normal port
operation. . '

1=TOGGLE output applied on port PRBG,
0=PULSE output applied on port PRE6.

1=ONE-SHOT TIMER A operation,
O=CONTINUOUS TIMER A operation.

1=FORCE LOAD on TIMER A (this is a STROBE input, there
is no data storage, bit 4 will always read back a zero
and writing a zero has no effect).

1=TIMER A counts positive CNTa transitions,.
0=TIMER A counts internal C1MHZ pulses.

1=SERIAL A PORT output mode (CNTA sources shift clock},

0=SERIAL A PORT input mode (external shift clock on CNTA)
1=30 Bz operation. C7MHZ divided down by 101339lto gene-~

rate TODA input of 10 Hz.

0=60 Hz operation. C7MHZ divided down by 102273 to gene-

rate TODA inpu.? of 10 Hz

Function

Bits 5 and 6 select one of four input modes for TIMER B

INMODE as follows:
CRB6 CRBS ' !
0 0 TIMER B counts C1MHz pulses,
0 1 TIMER B counts positive CNTA transitions.
1 0 TIMER B counts TIMERA underflow pulses.
1 1

7 ALARM TODA

TIMER B counts TIMERA underflows while CNTA is high.

l=writing to TODA registers sets ALARM,
O=writing to TODA registers sets TODA clock.

perate identically to bits 0-4 of the CRF - ;
s now apply to TIMER B and bit 1 contrel:.

System Specification for C65 ‘ Fred Bowen . : March 1, 1991

CRC (1XE):
BIT Bit Name Function _
0 STARTC 1=START TIMER C, O0=STOP TIMER C. This bit is automat-
: ically reset when TIMER C underflow occurs during one~
shot mode.
1 PRD6 ON 1=TIMER C output appears on PRD6, O0=PRD& normal port
operation.

2 - OUT-C MODE 1=TOGGLE output applied on port PRDS§,
0=PULSE output applied on port PRD6.

3 RUN-C MODE 1=ONE-SHOT TIMER C operation,
- 0=CONTINUOUS TIMER C operation.

4 LOADC 1=FORCE LOAD on TIMER C (this is a STROBE input, there
is no data storage, bit 4 will always read back a zero
and wrltlng a zere has no effect}.

5 TMRC INMODE 1I=TIMER C counts positive CNTB transitions,
0=TIMER C counts internal ClMHZ pulses.

6 SPB MODE 1=SERIAL B PORT output mode {CNTB sources shift clock), .
0=SERIAL B PORT input mode (external shift clock on CNTRE)

7 TODB IN 1=50 Hz operation. C7MHZ divided down by 101339 to gene-
rate TODB input of 10 Hz.
0=60 Hz operation. C7MHZ divided down by 102273 to gene-
rate TODB input of 10 Hz

CRD (1XF): ‘ .
BIT Bit Name Function

(TEts 0-4 of the CRD register operate identically to bits 0-4 of the CRD
register, except that functions now apply to TIMER D and bit 1 controls
the output of TIMER D on PRD7).

5,6 TIMERD Bits 5 and 6 select one of four input modes for TIMER D
INMODE as follows:
CRD6 CRDS
0 0 TIMER D counts ClMHz pulses.
0 1 TIMER D counts positive CNTB transitions.
1 0 TIMER D counts TIMERC underflow pulses.
1 1

TIMER D counts TIMERC underflows while CNTB is hlgh

7 ALARM TODB l=writing to TODB registers sets ALARM,
=writing to TODB registers sets TODA clock.

System Specification for C65

6526 cia
keyboard / joystlck / paddles / mouse / llghtpen / fast serial

Fred Bowen

C65 Peripheral Control Utilization

complex interface adapter #1

praddle "A"™ fire button
paddle "B"™ fire button
mouse left button

select port #1 paddlesimouse
select port #2 paddles|mouse

mouse right button
paddle "A" fire button
paddle "B" fire button

mouse left button

pral : keybd output cO / joystick #1 up /
pral : keybd output ¢l / joystick #1 down
praZ : keybd output c2 / joystick #1 left /
pra3 : keybd output c3 / joystick #1 right /
pra4 : keybd output c4 / joystick #1 fire /
pra5 : keybd output c5 /
praé : keybd ocutput cé / /
pra7 : keybd output c7 / /
prb0 : keybd input 0 / joystick #2 up /
prbl : keybd input rl / joystick #2 down /
Prb2 : keybd input r2 / joystick #2 left /
Prb3 : keybd input r3 / Joystick #2 right
pPrb4 : keybd input x4 / joystick #2 fire /
Prb5 : keybd input x5 /
prbé : keybd input ré / timer b: toggle/pulse output
Prb? : keybd input 7 / timer a: toggle/pulse output
timer 1 & cra : fast serial
timer 2 & crb :
tod :
sdr H
icr :
6526 cia complex interface adapter #2
user port / rs232 / serial bus / VIC bank / NMI
pral : wvald VIC 16K bank select
pral : vals : «
praZ : rs232 DATA output (Ce4 mode
pra3 : serial ATN output
prad : serial CLK output
pra5 : serial DATA output
pra6 : serial CLK input
pra’7 : serial DATA input
prb0 : user port / rs232 received data ' (C64 mode
prbl : user port / rs232 request to send
prbZ : user port / rs232 data terminal ready
prb3 : user port / rs232 ring indicator
prb4 : user port / rxs232 carrier detect
prb> : user port
Prbé : user port / rs232 clear to send
prb7 : user port / rs232 data set ready-
timer 1 & cra " rs232 baud rate {C64 mode
timer 2 & crb : rs232 bit check {(C64 mode

tod
sdr
ier

: nmi

(/irq)

mouse r;ght button

only)

only)

only)
only)

March 1,

System Specification for C65 Fred Bowen | March 1, 1991
2.3.6 UART Operation

The device contains seven registers to control the different UART
modes of operation. Section 2.2 describes how te access these registers.

The UART modes can be programmed by accessing the UART control
register, URCR, whose bits function as described below.

2.3.6.1 UART Control Register (URCR)

BIT Bit Name Function

0 PARITY EVEN 1=Even Parity. If parity is enabled, the transmitter
' will assert the parity bit (P) to a low when "even® pari-
ty data is transmitted, otherwise it will pull it high.
- The receiver checks that the parity bit is asserted,
or low, if the data received has even parity; if the bit
is not asserted, the device will indicate a parity error.

0=0dd Parity. 1If parity is enabled, the transmitter
will pull the parity bit (P) low, when "odgd" parity data
is transmitted, otherwise it will rull it high. The
receiver checks that the parity bit is asserted if the
data received has odd parity; if the bit is not asserted
when data had odd parity, the device will indicate a
parity error.

1 PARITY EN 1= Parity Enabled.

0= Parity Disabled. The transmitter and receiver will not
allocate a parity bit in the data, instead a stop bit
will be used in its place. See the Data Configuration
chart below, '

2,3 £HAR LENGTH These two bits are used to select the number of bits per
character to be transmitted or received. 5,6,7 or 8 bits
per character may be selected as follows: :

CHl cmo
0 0 eight bits per character
0 1 seven bits per character
1. 0 six bits per character
1 1 five bits per character

4,5 UART MODE These two bits select whether operations will be
. asynchronous or synchronous for the transmitter
and/or receiver. The actual selection is done as

follows:
oMl UM0 . .

0 0 both transmitter and receiver
operate in asynchronous mode.

0 1 receiver operates in synchronous

: mode, transmitter in asynchronous

mode,

1 x receiver operates in asynchronous

mode, transmitter in synchronous
mode., :

System Specification for C65 Fred Bowen March 1, 1991

BIT Bit Name

6 RCVR EN

7 XMITR EN

Function
0= Receiver is disabled.

1= Receiver is Enabled. To provide. noise imhunity, the

- duration of a bit interval is segmented into 16 sub-

intervals. This is also used to verify that a high to
low transition (START bit) on the RXD line is valid
(stays low) at the half point of a bit duration; if not
valid, operation will not start. o

If after an idle period, a high to low transition is
detected on the RXD line and is verified to be low, the
receiver will synchronized itself to the incoming char-
acter for the duration of the character. Received data
is then sampled or latched in the center of a bit time to
determine the value of the remaining bits. The LSB of
the data is the leading bit received. Any unused high
order register bits will be set "high"”. The receiver
expects the data to have only one parity bit (when parity
is enabled) and one stop bit.

At the end of the character reception, the receiver will
check whether any errors have occured and will update

the status register (URSR) accordingly. In addition, if
no errors were encountered the receiver will load the
contents of the shift register into the Receiver Data
Register, eliminating parity and stop bits.

Iin synchronous mode, the receiver will reconfigure its
Data Register and Shift Register so that only 8 data
bits are always accepted on the RXD line. This mode
only works if an external clock is applied on the PRC2
input line, whigch is used to shift the bits into the
Receiver Shift Register. Data on the RXD is latched at

-the rising edge of the external clock applied in PRC2.

- 0= Transmitter is disabled.

tion once the microprocessor writes data to the trans- 3
mitter data register (DREG), after which the Transmitter -
Shift Register is loaded and the start bit is placed on
the TXD line. The LSE of the data is the leading bit
being transmitted. The Transmitter is "doubled buffered"
which means that the CPU can load a new character as

soon as the previpous one starts transmission.

This is indicated by the status registex, bit 6 (URSR6-
EMPTY Data Register), which when set, it indicates that
the data register is ready to accept the next character.
The character data format is illustrated by figure 1.3.

l=_ Transmitter is Enabled. Transmitter will-startmoperaf

In synchronous mode, the transmitter will reconfigure its
Data Register and 8hift Register so that only 8 data
bits are always transmitted on the TXD line, eliminating
all parity and stop bits. The external clock ontput will
be placed in the PRC2 line and will shift the data

out of the transmitter shift register. Data on the TXD
line will change on the falling edge of the PRC2 signal,
the external clock.

System Specification for C65 Fred Bowen . March 1, 1991

2.3.6.2 UART Status Register (ORSR)

BIT Bit Name

0 FULL

1 OVR

2 PRTY

3 FRME

4 IDLE
>

5 ENDT

Function

Receiver Data Register Full bit. This bit is forced to

a low upon reset, or after the data register (DREG) is
read. This bit is enabled only if the RCVER EN bit is
set in the URCR register. The FULL bit is set when the
character being received is transferred from the receiver
shift register into the receiver data register. If an
error is encountered in the character data, this bit will
not be set and the proper error bit will be set in the
URSR register.

Receiver. Over-Run Error bit. This bit is cleared upon

reset or after reading the receiver data register. This
bit is set if the new received charater is attempted to
be transferred from the receiver shift register before
reading the last character from the data register. There-
fore, the last character is preserved in the data
register while the new received character is lost.

Receiver Parity Error bit. This bit is cleared upon
reset or after reading the receiver data register. The
PRTY bit will be set when a parity error is detected on
the received character, provided the PARITY EN bit is set
and receiver is running asynchronously.

Receiver Frame Exrror bit. This bit is cleared upon
reset or after reading the receiver data register.
The FRME bit is set whenever the received character
contains a low in the first stop-bit slot.

Receiver Idle bit, When this bit is written to a "high",
the status register bits 0-3 are disabled until the _
receiver detects 10 consecutive marks, highs, on the RXD
line, at which time the IDLE bit is cleared. This bit is
alse cleared upon reset. This bit allows the micro-
processor, -or any external microprocessor device, to
ignore the transmission of a character until the start

of the next character.

Transmitter End of Transmission bit. This bit is cleared
upecn reset or whenever data is written Ainto the trans-
mitter data register, DREG. Setting this bit would
disable the Transmitter Empty bit, EMPTY, until device
completes transmission. :

System Specification for C65 Fred BRowen’

2.3.6.3 Character Configuration

ASYNC MODE
S
TB P= PARITY BIT
Al STP= STOP BIT
RT
T LSB

MARK >~

DO| Di| D2| D3] pa} P |[sTplsTP

DO| p1| D2} D3| p4a| ps| p |sTPlsTP| <
po| pi| p2| p3| p4a| os| ve| p |sTPiSTP
p0| p1| p2! p3| pa| ps| pe| p7| P lsTP
D0} D1| D2} D3| palsTeisTP <
p— 3
DO} D1| p2}| D3| p4| ps|sTe|sTPE <
D0y p1| D2| D3| p4| ps| pelsTP|sTE
DO} p1| D2| D3| p4| D5| D6| D7|sTe|sTE

5-BIT/CHARACTER -

5-BIT/CHARACTER

<

CHARACTER CONFIGURATION

TABLE 3

March 1, 1991

6-BIT/CHARACTER
7-BIT/CHARACTER

8~BIT/CHARACTER

e —

6-BIT/CHARACTER
7-BIT/CHARACTER

8-BIT/CHARACTER

OHHOMPNHD KEHODU OO ZEE =y

System Specification for C65 Fred Bowen March 1, 1991
2,.3.6.4 Register Map
C65 UART
R/W REG NAME D7 D6 D5 D4 D3 D2 D1 DO .
R/W | 0| para rR/x?7 | R/%6 | r/x5 | rxe | R/x3 | r/x2 | mr/x1 | R/%O
R 1 STATUS | XMIT | XMIT | ENDT | IDLE | FRAME|PARITY| OVER | RCVR
- DONE | EMPTY! (R/W)| (R/W) RUN | FULL
R/W | 2 CONTROL | XMIT | RCVR | UART MODE | WORD LENGTH PARITY
: - oN ON ' ON EVEN
R/W | 3 BAUD LO | BRL7 | BRL6 | BRLS | BRL4 | BRL3 | BRL2 | BRL1 | BRLO
R/W | 4 BAUD HI | BRH? | BRH6 | BRHS | BRH4 | BRH3 | BRH2 | BRE1 | BRHO
R/W | 5 | InNT MASK | xMI1T | ROVR | xMIT | ROVR | -- - - —
IRO IRO | NMT NMI
R ?s | InT FLaG | xm1T | ROVR | xMIT | ROVR - - - -
IRQ 1RO | NMI NMT

The BAUD RATE can be generated using the following formulas:

System Specification for C&5

URCLK

BaudRate = —rre—ecmaaa e
16 (COUNT+1)

Where:

The following tables show some of the most common data rates.
Data rate errors of less than +/-1.5% are acceptable for most purposes.

A. NTSC

Qr,

Fred Bowen

March. 1,

URCLK

COUNT = === ——mm—mw———

16 x BaudRate

COUNT = value loaded into BAUD RATE register
= -CTMhz input,

7.15809 MHz NTSC
7.09375 MHz PAL

URCLK = 7.15909 MAZ
BR | BAUD RATE | COUNT | BAUD RATE | PERCENT
¢ | REQUIRED (HEX) OBTAINED | ERROR
1 50 22F4 49,999 .0015
2 75 174D 74.999 .0015
3 110 OFE3 109.991 -0080
2 134.5 OCFE 134.288 .0090
5 150 OBAG 129,998 0015
6 300 05D2 1299.865 -035
7 600 02E9 599.79 .035
8 1200 0174 1199.58 .035
9 1800 00F8 1796.96 17
10 2400 00BS 2392.74 230
11 3600 0078 3608.41 .23
12 2800 005C 4811.22 .23
13 7200 003D 7216.82 .23
12 9600 002E 5 9520.07 .83
15 | 19200 0016 | 19254.0 1.323
16 | 31250 000D | 31960.2 1.023
0| 56000 0007 | 55030.4 122
B. PAL URCIK = 7.09375 MHZ
BR | BAUD RATE | COUNT | BAUD RATE | PERCENT
¢ | REQUIRED (HEX) OBTAINED | ERROR
1 50 2282 50.001 .0020
2 75 1716 75.005 .0080
3 110 OFEBE 109.987 .010
2 134.5 0CDF 134.514 .010
5 150 0B8R 149,986 .009
6 300 05C5 299.373 .009
7 600 02E2 599.75 -009
8 1200 0170 1198.27 S144
9 1800 00FS 1802.27 126
10 | 2400 00B8 2396.54 144
11 3600 007A 3604.55 1126
12 2800 005B 2819.12 .398
13 7200 003D 7150. 96 .68
12 9600 002D 9638.25 .40
15 | 18200 0016 | 19276.5 -40
16 | 31250 000D | 31668.5 1.01
0 0007 | 55419.9 1.04

56000

(MIDT)

- (MIDI)

1991

System Specification for C63 Fred Bowen March 1, 1991
2.3.7 cru

2.3.7.1 Introduction

The 4502, upon reset, loocks and acts like any other CMOS 6502
Processor, with the exception that many instructions are shorter or
require less cycles than they used to. This causes programs to execute
in less time that older versions, even at the same clock frequency.

The stack pointer has been expanded to 16 bits, but can be used
in two different modes. It can be used as a full 16~bit (word} -stack
pointer, or as an 8-bit (byte) pointer whose stack page is programmable.
on reset, the byte mode is selected with page 1 set as the stack page.
This is done to make it fully 65C02 compatible.

The zero page is also programmable via a new register, the "B" or
‘Base Page" register. On reset, this register is cleared, thus giving a
-rue "zero" page for compatability reasons, but the user can define any
.‘page in memory as the "zero" page.

A third index register, "2", has been added to increase'flexability
in data manipulation. This register is also cleared, on reset, so¢ that the
STZ instructions still do what they used to, for compatability.

This is a list of opcedes that have been added to the 210 previously
defined MCS, Rockwell, and GTE opcodes.

1. Branches and Jumps

BCC label word-relative
BCS label word-relative
BEQ label ‘word~relative
BMI label word-relative
BNE label word~relative
Bi% label " word-relative
B label word-relative
BVC label - word-relative
BVS label word-relative
BSR label Branch to subroutine (word relative)
NDL JSR (ABS) . Jump to subroutine absolute indirect
- JSR {(ABS, X) Jump to subroutine absolute indirect, X
RTN # Return from subroutine and adjust stack pointer.

2. Arithmetic Operations. .

NEG A Negate (or 2's complement) accumulator.
ASR A Arithmetic Shift right accumulator or memory
ASR ZP

ASR 2ZP,X

INW ZP Increment Word

DEW ZP Decrement Word

INZ ‘Increment and

DEZ Decrement Z register

ASW ABS Arithmetic Shift Left Word

RCW ABS Rotate Left Hord

ORA {ZP),2 These were formerly (ZP) non- lndexed
AND (2P),Z2 now are indexed by 2Z reglster

EQR (ZP),2 (when .2=0, operation is the same)

ADC
CMP
" 8BC

Cpr2
- CP2
CrZ

(2P}, 2
(2P) , 2
(2P) , 2

IMM
Zp
ABS

Compare Z register with memory immediate,
zero page, and
absolute.

3. Loads, Stores, Pushes, Pulls and Transfers

Lba (ZP),2

Lpz
LDz
LbZ2

1pa
STA

STX
STY

STZ
ST2
STZ
STz
ST

PHD
PHD

PHZ
PLZ

TAZ
TZA

TAB
TBA

TSY
TYS

IMM
ABS
ABS,X

(d,SP),Y
{d,sp},Y

ABS,Y
ABS, X

ZF
ABS
Zp,X
ABS, X

(ZP) , 2

IMM
ARS

formerly (ZP)

Load Z register immediate,
absolute,
absolute, X.

Load Accum via stack vector indexed'by Y
and Store

Store X Absolute, Y
Store Y Absolute, X

Store Z register (formerly store zero)

formerly (2P)

Push Data Immediate (word)
Push Data Absolute (word)

Push Z register onto stack
Pull Z register from stack

~ >
Transfer Accumulator to Z register
Transfer Z register to Accumulator

Transfer Accumulator to Base page register
Transfer Base page register to Accumulator

Transfer Stack Pointer High byte to Y register
and set "byte" stack-pointer mode

Transfer Y register to Stack Pointer High byte
and set "word" stack-pointer mode

L

System Specification for C65 Fred Bowen : March 1, 1991
2.3.7.2 CPU Operation |

The 4502 has the following 8 user registers:

A accumulator

X index-X

Y index-Y

A index-2

B Base-page '

P Processor status

SP Stack pointer

PC Program counter
Accumulator

The accumulator is the only general purpose computational register. It
can be used for arithmetic functions add, subtract, shift, rotate, negate,
and for Boolean functiens and, or, exclusive-or, and bit operations. It
cannot, however, be used as an index register.

Index X

The index register X has the largest number of cpcodes pertaining to,
or using it. It can be incremented, decremented, or compared, but not used
for arithmetic or logical (Boolean) operations. It differs from other index
registers in that it is the only register that can be used in indexed-indirect
or (bp,X) operations. It cannot be used in indirect-indexed or (bp),Y mode.

Index ¥

The index register Y has the same computational constraints as the X
register, but finds itself in a lot less of the opcodes, making it less
generally used. But the index Y has one advantage over index X, in that it
can be us"g in indirect-indexed operations or (bp) ,Y mode,

index A

The index register Z is the most unique, in that it is used in the
smallest number of opcodes. It also has the same computation limitations as

'the X and Y registers, but has an extra feature. Upon reset, the Z register

is cleared so that the STZ (store zero) opcodes and non-indexed indirect
opcodes from previous 65C02 designs are emulated. The Z .register can also
be used in indirect-indexed or (bp),2 operations. ' .

Base page B register

Early versions of 6502 microprocessors had a special subset of
instructions that required less code and less time to execute., These were
referred to as the "zero page” instructions. Since the addressing page
was always known, and known to be zero, addresses could be specified as
a single byte, instead of two bytes.

The CSG4502 also implements this same "zero page"” set of instructions,
but goes one step further by allowing the programmer to specify which page
is to be the "zero page". Now that the programmer can program this page, it
is now, not necessarily page zero, but instead, the "selected page”. The term
"base page" is used, however. : .

The B register selects which page will be the "base page", and the user
sets it by transferring the contents of the accumulator to it. At reset, the
B register is cleared, giving initially a true “zero page”.

Processor status P register

The processor status register is an 8-bit register which is used to
indicate the status of the microprocessor. It contains 8 processor "flags".
Some of the flags are set or reset based on the results of various types
of operations. Others are more specific. The flags are...

Flag Name Typical indication
N Negative result of operation is negative
v Overflow result of add or subtract causes signed overflow
E Extend disables stack pointer extension
B Break interrupt was caused by BRK opcode
D Decimal. perform add/subtract vsing BCD math
I Interrupt disable IRQ interrupts
pA Zero result of operation is zero
C Carry operation caused a carry

Stack Pointer 8P

The stack pointer is a 16 bit register that has two modes. Tt can be
programmed to be either an 8-bit page programmable pointer, or a full 16-bit

pointer. The processor status E bit selects which mode will be used. When

set, the E bit selects the 8-~bit mode. When reset, the E bit selects the
l16~bit mode. }

Upon reset, the CSG 4502 .will come up in the 8-bit page-programmable
mode, with the stack page set to 1. This makes it compatible with earlier
6502 products. The programmer can quickly change the default stack page by
loading the Y register with the desired rage and transferring its contents
to the stack pointer high byte, using the TYS opcode. The 8-bit stack pointer
can be set by loading the X register with the desired value, and transferring
its contents to the stack pointer low byte, using the TXS opcode.

To select the 16-bit stack poinlder mode, the user must execute a CLE
(for CLear Extend disable) opcode. Setting the 16-bit pointer is done by
loading the X and Y registexrs with the desired stack pointer low and high
bytes, respectively, and then transferring their contents to the stack

pointer using TXS and TYS. To return to 8-bit page mode, simple execute a
SEE (SEt Extend disable) opcode.

**

WARNING

*
*
If you are using Non-Maskable-Interrupts, or Interrupt *
Request is enabled, and you want to change BOTH stack *
peinter bytes, do not put any code between the TXS and *
TYS opcodes. Taking this precaution will prevent any *
interrupts from occuring between the setting of the two *
stack peinter bytes, causing a potential for writing *
stack data to an unwanted area. *

*

*
*
*
*
*
*
*
*
*
***********************************ti**********************

Program Counter PC

The program counter is a 16-bit up-only counter that determines what
area of memory that program information will be fetched from. The user
generally only modifies it using jumps, branches, subroutine calls, or

returns. It is set initially, and by interrupts, from vectors at memory
addresses FFFA through FFFF (hex). See "Interrupts" below.

2.3.7.3 65CEN2 Interrupts

There are four basic interiupt sources on the CSG 4502. These are
RES*, IRQ*, NMI*, and SO, for Reset, Interrupt Request, Non-Maskable

Interrupt, and Set Overflow. The Reset is a hard non-recoverable interrupt
that stops everything. The IRQ is a "maskable" interrupt, in that its
occurance can be prevented. The NMI is "non-maskable™, and if such an
event occurs, cannot be prevented. The S0, or Set Overflow, is not really
an interrupt, but causes an externally generated condition, which can be
used for control of program £flow.

One important design feature, which must be remembered is that no
interrupt can occur immediately after a one-cycle opcode. This is very
important, because there are times when you want to temporarily prevent
interrupts from occurring. The best example of this is, when setting a
16-bit stack peinter, you do not want an interrupt to occur between the
times you set the low-order byte, and the high-order byte. If it could
happen, the interrupt would do stack writes using a pointer that was only
partially set, thus, writing to an unwanted area. o

IRO*

The IRQ* (Interrupt ReQuest) input will cause an interrupt, if it is
-at a low logic level, and the I processor status flag is reset. The interrupt
‘sequence will begin with the first SYNC after a multiple-cycle opcode. The two
program counter bytes PCH and PCL, and the processor status register P, are
pushed onto the stack. (This causes the stack pointer SP to be decremented
by 3.) Then the program counter bytes PCL and PCH are loaded from memory
addresses FFFE and FFFF, respectively. - '
An interrupt caused by the IRQ* input, is similar to the BRK opcode, -
but differs, as follows. The program counter value stored on the stack points
to the opcode that would have been executed, had the interrupt not occurred.
On return from interrupt, the processor will return to that opcode. Also, when
the P register is pushed onto the stack, the B -or "break™ flag pushed, is zero,
to indicate that the interrupt was not software generated.

NMI*

The NMI* (Non-~Maskable Interrupt) input will cause an interrupt after
receiving g high to low transition The interrupt sequence will begin with the
first SYNC after a multiple-cycle opcode. NMI* inputs cannot be masked by
the processor status register I flag. The two program counter bytes PCH and
PCL, and the processor status register P, are pushed onto -the stack. (This
causes the stack pointer SP to be decremented by 3.) Then the program counter
bytes PCL and PCH are loaded from memory addresses FFFA and FFEB.

As with IRQ*, when the P register is pushed onto the stack, the B or

"break™ flag pushed, is zero, to indicate that the interrupt was not scftware
generated. . -,

RES*

The RES* ({reset) input will cause a hard reset instantly as it is
brought to 2 low logic level. This effects the following conditions. The
currently executing opcode will be terminated. The B and Z registers will
be cleared. The stack pointer will be set to "byte" mode, with the stack
page set to page 1. The processor status bits E and I will be set.

The RES* input should be held low for at least 2 clock cycles. But
once brought high, the reset sequence begins on the CPU cycle. The first
four cycles of the .reset sequence do nothing. Then the program counter
bytes PCL and PCH are loaded from memory addresses FFFC and FFFD, and
nermal program execution begins. .

50

The S0 (set overflow) input does, as its name implies, set the
overflow or V processor status flag. The effect is immediate as this active
low signal is brought or held at a low logic level. Care should be taken

-

if this signal is used, as some of the opcodes can set or reset the
overflow flag, as well. NOTE: The SO pin has been removed for C65.

2.3.7.4 B5CE02 Addressing Modes

It should be noted that all 8-bit addresses are referred to as "byte"®
addresses, and all 16~bit addresses are referred to as "word" addresses. In
all word addresses, the low-order byte of the address is fetched from the lower
of two consecutive memory addresses, and the high-order byte of the address
is fetched the higher of the two. So, in all operations, the low-order address
is fetched first. : ' ‘

Implied OPR

The register or flag affected is identified entirely by the opcode
in this (usually) sSingle cycle instruction. In this document, any implied
operation, where the implied register is not explicitly declared, implies
the accumulator. Example: INC with no arguments implies "“increment the
accumulator®.

Immediate (byte, word) CPR #xx

The data used in the operation is taken from the byte or bytes
immediately following the opcode in the 2-byte or 3~byte instruction.

Base Page 7 OPR bp (formerly Zero Page)

The second byte of the two-byte instruction contains the low-order
address byte, and the B register contains the high-order address byte of
the memory location to be used by the ,operation.

Base Page, indexea by X : OFR bp, X (formerly Zero Page,X)

The second byte of the two-byte iﬂstruction is added to the X index
register to form the low-order address byte, and the B register contains the
high-order address byte of the memory location to be used by the operation.

Base Page, indexed by Y OPR bp, Y (formerly Zero Page,Y)

The second byte of the two~byte instruction is added to the Y index
register to form the low-order address byte, and the B register contains the
high-order address byte of the memory location to be used by the operation.

Absolute OPR abs

. The second and third bytes of the three;byte instruction contain the
‘low-order and high-order address bytes, respectively, of the memory location
to be used by the operation.

Absolute, indexed by X CPR abs,X

The second and third bytes of the three~byte instruction are added to
the unsigned contents of the X index register to form the low-order and
high-order address bytes, respectively, of the memory location to be used
by the operation. _ '

Absolute, indexed by Y OPR abs,Y _
The second and third bytes of the three-byte instruction are added to

the unsigned contents of the Y index register to form the low-order and
high-order address bytes, respectively, of the memory location to be used

by the operation.
Indirect {(word) OPR (abs) {JMP and JSR only)

The second and third bytes of the three-~byte instruction contain the
low-order and high-order address bytes, respectively, of two memory locations
containing the low-order and high-order JMP or JSR addresses, respectively.

Indexed by X, indirect (byte) OPR (bp,X) (formerly {zp,X))

The second byte of the two-byte instruction is added to the contents ,
of the X register to form the low-order address byte, and the contents of the B
register contains the high-order address byte, of two memory locations that
contain the low-order and high-order address of the memory location to be used
by the operation. '

Indexed by X, indirect {(word). OPR (abs,X} (JMP and JSR only)

The second and third bytes of the three-byte instruction.are added to
the unsigned contents of the X index register to form the low-order and
high-order address bytes, respectively, of two memory locations containing the
low=-order and high-order JMP or JSR address bytes. :

Indirect, indexed by Y OPR (bp),Y (formerly {zp),Y)

The second byte of the two-byte instruction contains the low-order byte,
and the B register contains the high-order address byte of two memory loc-
ations whose contents are added to the unsigned Y index register to form the
address of the memory location to be used by the operation.

Indirect, indexed by Z OPR (bp),2 . {formerly (zp)')

The second byte of the two-byte instruction contains the low-order byte,
and the B register contains the high-order address byte of two memoxry loc-
ations whose contents are added to the unsigned Z index register to form the
address of the memory location to be used by the operation.

Stack Poigier Indirect, indexed by Y -~ OPR (d,SP),Y {new)

The second byte of the two~-byte instruction contains an unsigned offset
value, d, which is added to the stack pointer (word) to form the address of
two memory locations whose contents are added to the unsigned Y register to

:form the address of the memory location to be used by the operation.

Relative {byte) ' Bxx LABEL {branches only)

The second byte of the two-byte branch instructien is sign-extended to
a full word and added to the program counter {now containing the opcode address

plus two). If the condition of the branch is true, the sum is stored back into
the program counter. : ‘

Relative (word) Bxx LABEL (branches only)

The second and third bytes of the three-byte branch instruction are
added to the low-order and high-order program counter bytes, respectively.
(the program counter now contains the opcode address plus two). If the
condition of the branch is true, the sum is stored back into the program
counter,

System Specification for €65 Fred Bowen March 1, 1991

" 2.3.7.5 65CED2 Instruction Set

Add memory to accumulator with carry ‘ ' . - ADC
A=A+M+C |
Addressing Mode Abbrev.. Opcode
immediate IMM _ £9
base page BP 65
base page indexed X BE, X 75
absolute ABS 6D
absolute ‘indexed X ABS, X 7D
absolute indexed Y ABS,Y 79
base page indexed indirect X (BF,X) 6l
base page indirect indexed Y (BP),Y 71
base page indirect indexed Z (BP),Z 72
Bytes Cycles Mode
2 2 immediate
2 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or 2

The ADC instructions add data fetched from memory and carry to the
contents of the accumulator. The results of the add are then stored in the
accumulator. If the "D" or Decimal Mode flag, in the processor status regis-
ter, then a Binary Coded Decimal (BCD) add is performed.

The "N" or Negative flag will be set if the sum is negative, otherwise
it is cleared. The "V" or Overflow fl.& will be set if the sign of the sum
is different from the sign of both addends, indicating a signed overflow,
Otherwise, it is cleared. The "Z" or Zero flag is set if the sum (stored into
the accumulator} is zero, otherwise, it is cleared. The "C" or carry is set
if the sum of the unsigned addends exceeds 255 (binary mode) or 99 (decimal
mode} . :

Flags
NV BDIZC
NV --=--2°C

n

System Specification for C65 Fred Bowen . March 1, 1991

And memory logically with accumulator) AND
A=A.and.M |
Addressing Mode Abbrev. Opcode
immediate IMM 29
base page BP 25
base page indexed X BP,X - 35
absolute . ABS 2D
absolute indexed X ABS, X 3D
absolute indexed Y ABS,Y 39
base page indexed indirect X (BP,X) 21
base page indirect indexed ¥ (BP),Y 31
base page indirect indexed 2 (BP),Z 32
Bytes Cycles Mode :
2 2 immediate
2 -~ 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or Z

The AND instructions perform a logical "and" between data bits fetched
from memory and the accumulator bits. The results are then stored in the
accumulator. For each accumulator and corresponding memory bit that are both
logical 1’'s, the result is a 1. Otherwise it is Q.

The "N" or Negative flag will be set if the bit 7 result is a 1.

Otherwise it is cleared. The "2" or Zero flag is set if all result bits are
zero, otherwise, it is cleared.

: Fl-ms
NVEBDTIZZC

System Specification for C65 Fred Bowen March 1, 1991

Arithmetic shifts, memory or accummlator, left or right ASI, ASR ASW
ASL Arithmetic shift left A or M A<A<<l or M<M<<1
ASR Arithmetic shift right A or M A<A>>1 or M<M>>1
ASW Arithmetic shift left M (word) Mx<Mw<<1

Opcodes -
Addressing Mode Abbrev. ASL ASR ASW
register (A} oA 43
base page . BP 06 44
base page indexed X BP, X 16 54
absolute ABS OE CB
absolute indexed X ABS,X iE
Bytes Cycles Mode
i 1 register (ASL)
1 2 register (ASR)
2 4 base page (byte) non-indexed, or indexed X
3 5 absolute non-indexed, or indexed X
3 7 absclute (ASW)

The ASL instructions shift a single byte of data in memory or the ac-
cumulator left (towards the most significant blt} one bit position. A 0 is
shifted into bit 0. :

The "N" or Negative bit will be set if the result bit 7 is (operand bit
6 was) a 1. Otherwise, it is cleared. The “Z" or 2Zero flag is set if ALL
result bits are zerc. The "C" or Caxry’flag is set if the bit shifted out is
{operand bit 7 was}) a 1. Otherwise, it is cleared.

The ASR instructions shift a single byte of data in memory or the ac-
cumulator right (towards the least significant bit) one bit position. Since
this is an arithmetic shift, the sign of the operand will be maintained.

The "N*" or Negative bit will be set if bit 7 (operand and result} a 1.
Otherwise, it is cleared. The ™Z" or Zero flag is set if ALL result bits are
zeroc. The "C" or Carry flag is set if the bit shifted out is (operand bit 0
was) a 1. Otherwise, it is cleared.

The ASW instruction shifts a word (two bytes) of data ird memory left
(towards the most significant bit) one bit pesition. A zerc is shifted into
bit Q.

" The "N" or Negative bit will be set if the result bit 15 is (operand bit
14 was) a 1. Otherwise, it is cleared. The "2" or Zero flag is set if ALL
result bits (both bytes) are zero. The "C" or Carry flag is set 1f the bit
shifted out is (operand bit 15 was) a 1. Otherwise, it is cleared.

Flags
NVEBDIZC
N--=--= ZC

————

System Specification for C§5 Fred Bowen March 1, 1891

Branch conditional or unconditional BCC BCS BEQ BMI BNE
BPL BRA BVC BVS

Opcode Opcode Byte Opcode Word Opcode

Title Relative Relative Purpose
BCC 90 93 Branch if Carry Clear
BCS BO B3 Branch if Carry Set .
BEQ 0 F3 Branch if EQual (Z flag set)
BMI 30 : 33 Branch if MInus (N flag set) -
BNE Do D3 Branch if Net Equal (2 flag clear)
BPL 10 13 Branch if PLus (N flag clear)
BRA 80 83 BRanch Always
BVC 50 . 53 Branch if oVerflow Clear
BVS 70 73 Branch if oVerflow Set
Bytes Cycles Mode
2 2 byte-relative
3 3 word-relative

All branches of this type are taken, if the condition indicated by
the opcode is true. All branch relative offsets are referenced to the
branch opcode location+2. This means that for byte-relative, the offset is
relative to the location after the two instruction bytes. For word-relative,
the offset is relative to the last of the three instruction bytes.

Flags
NVEEBDIZZC

r
Break (force an interrupt) . ' BRK
Bytes Cycles Mode Opcode ‘ ‘
2 7 implied - 00 (stack)<PC+1lw,P SP<SP-2

_ The BRK instruction causes the processor to enter the IRQ or Interrupt
ReQuest state. The program counter (now incremented by 2), bytes PCH and PCL,
and the processor status register P, are pushed onto the stack. (This causes
the stack pointer SP to be decremented by 3.) Then the program, counter bytes
?CL and PCH are locaded from memory addresses FFFE and FFFF, respectively.

The BRK differs from an externally generated interrupt request (IRQ) as
follows. The program counter value stored on the stack is PC+2, or the address
of the BRK opcode+2. On return from interrupt, the processor will return to
the BRK address+2, thus skipping the opcode byte, and a following "dummy" byte.
A normal IRQ will not add 2, so that a return will execute the interrupted
opcode. Also, when the P register is pushed onte the stack, the B or "break" .
flag is set, to indicate that the interrupt was software generated. All outside
interrupts push P with the B flag cleared.

Flags
NVEBRDIZCZC

- e e am am s o

System Specification for C65 - Fred Bowen . March 1, 1991

Branch to subroutine : ' BSR
Bytes Cycles Mcde Opcode
3 5 word-relative 63 {(stack) <PC+2w SP<SP-2-

The BSR Branch to SubRoutine instruction pushes the two program
counter bytes PCH and PCL onto the stack. It then adds the word-relative
signed offset to the program counter. The relative offset is referenced
Lo the address of the BSR opcode+2, hence, it is relative to the third
byte of the three-byte BSR instruction. The return address, on the stack,
also points to this address. This was done to make it compatible with the
RTS functionality, and to be consistant will other word-relative operations.

Flags ' ' -
NVEBDIZC ’

Clear processor status bits CLC CLD CLE CLI CLV
Opceode Cycles Flags

_ : NVEBDIZC
CLC Clear the Carry bit 18 l - e - e - - R
CLD Clear the Decimal mode bit D8 1 - =« -R - - -
CiE Clear stack Extend disable bit 0z 2 - =R == - = -
CLI Clear Interrupt disable bit 58 2 - e - - - R - -
CLV Rlear the Oveflow bit B8 1 “R===-=---

Bytes Mode
1 implied

All of the P register bit clear intructions are a single byte long.
Most of them require a single CPU cycle. The CLI and CLE require 2 cycles.
The purpose of extending the CLI to 2 cycles, is to enable an interrupt to

occur immediatgly, if one is pending. Interrupts cannot occur after single
cycle instructicns. ‘ ,

System Specification for C65 Fred Bowen March 1, 1991

Compare registers with memory CMP CPX cpY CPz

Ccmp Compare accumulator with memory (A-M)

CPX Compare index X with memory {X-M)
CPY Compare index ¥ with memory {Y-M)
Crz Compare index Z with memory {Z-M}
Qpcodes’
Addressing Mode Abbrev, CMP CPX CPY (P2
immediate IMM c9 ED co c2
base page BP - C5 E4 C4 D4
base page indexed X BP, X DS A
absolute ABS CDh EC CcC DC
y absolute indexed X : ABS, X DD
absolute indexed ¥ ABS,Y . DS
base page indexed indirect X (BP,X) Lo |
base page indirect indexed Y (BP),Y Dl
base page indirect indexed Z (BP),Z2 D2
Byte Cycles = Mcde
2 2 immediate
2 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or 2

Compares are performed by subtracting a value in memory from the
register being tested. The results are not stored in any register, except
the following status flags are updateqi

The "N" or Negative flag will be set if the result is negative (assuming
signed operands), otherwise it is cleared. The "2" or Zero flag is set if the
result is zero, otherwise it is cleared. The "C" or carry flag is set if the
unsigned register value is greater than or equal to the unsigned memory value.

Flags
NVEBDIZZC

System Specification for C65 Fred Bowen March 1, 1991

Compare registers with memory CMP CPX CPY CPZ

CMP Compare accumulator with memory (A-M)

CpXx Compare index X with memory {(X-M)
CPY Compare index Y with memory {Y-M)
Cr2 Compare index Z with memory (Z2-M)
Opcodes’
Addressing Mode Abbrev. CMP CPX CPY CPZ
immediate ImM (04 EQ co c2
base page BP €5 . E4 C4 D4
base page indexed X BP, X D5 :
absolute , ABS Cb EC CC DC
i absolute indexed X ABS, X DD
absolute indexed Y ABS,Y . D9
base page indexed indirect X (BP,X) Cl
base page indirect indexed Y (BP),Y D1
base page indirect indexed Z (BP},2 D2
Byte Cycles Mode
2 2 immediate
2 3 base page non-indexed, or indexed X or Y
3 4 - absoclute non-indexed, or indexed X or Y
2 S base page indexed indirect X, or indirect indexed Y or 2

Compares are performed by subtracting a value in memory from the
register being tested. The results are not stored in any register, except
the following status flags are updateqi

The "N" or Negative flag will be set if the result is negative (assuming
signed operands), otherwise it is cleared. The "Z" or Zero flag is set if the
result is zero, otherwise it is cleared. The "C" oxr carry flag is set if the
unsigned register value is greater than or equal to the unsigned memoery value.

'Flags
NVEBDIZZC

System Specification for C&5 Fred Bowen March 1, 1981

- Exclusive OR accumulator logically with memory EOR

A=A.or.M.and..not.(A.and.M)

Addressing Mode abbrev. Opcode

immediate IMM .49

base page BP 45

base page indexed X BP,X : 55

absolute : ABS : 4D

absolute indexed % ' ABS, X SD

absolute indexed Y . - ABS,Y 59

base page indexed indirect X (BP,X) 41

base page indirect indexed Y (BP),Y 51

base page indirect indexed 2 (BP), 2 52

Bytes Cycles Mode

2 2 immediate
2 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or 2

The EOR instructions perform an "exclusive or" between bits fetched
from memory and the accumulator bits. The results are then stored in the
accumulator. For each accumulator or cerresponding memory bit that are
different {(one 1, and one 0) the result is a 1. Otherwise it is 0.

The "N" or Negative flag will be set if the bit 7 result is a 1.
Otherwise it is cleared. The "Z" or Zero flag is set if all result bits are
zero, otherwise, it is cleared. > '

Flags
NVEBDIZCZC

‘System Specification for Cé5 Fred Bowen : March 1, 1991

Jump to subroutine JSR
Addressing Mode Abbrev. Opcode bytes cycles
absolute ABS 20 3 5
absolute indirect (ABS) 22 3 7
absolute indexed indirect X (ABS, X) 23 3 7

The JSR Jump to SubRoutine instruction pushes the two program counter
bytes PCH and PCL onto the stack. It then loads the program counter with the’
new address. The return address, stored on the stack, is actually the address
of the JSR opcode+2, or is pointing to the third byte of the three-byte JSR
instruction. _

Flags
NVEBDIZC

- e e aa em e oam am

Load registers ‘ LDA LDX LDY LDZ

LDA Load Accumulator from memory A<M

LDX Load index X from memory X<M
LDY Load index ¥ from memory Y<M
Dbz Load index Z from memory Z<M
Addressing Mode Abbrev, LDA LDX LDY 1LbZ
immediate i ¥ AS A2 A0 A3
base page BP AD A6 A4
base page indexed X BP,X - BS B4
base page indexed Y BP,Y Be
absolute ABS AD° AE AC AB
absolute indexed X ARS, X BD BC - BB
absolute indexed Y ABS,Y B9 BE
base page indexed indirect ¥ (BP,X) Al
base page indirect indexed Y (BPF),Y Bl
base page indirect indexed 2 (BP),2 B2
stack vector indir indexed ¥ (d,8P),Y E2 ,
Bytes Cycles Mode
2 2 immediate _
2 3 base page non-indexed, or indexed X or ¥
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or 2
2 6 stack vector indirect indexed Y

These instructions load the specified register from memory. The "N"
or Negative flag will be set if the bit 7 loaded is a 1. Otherwise it is
cleared. The "Z* or Zero flag is set if all bits loaded are zero, otherwise,
it is cleared.

Flags
NVEBDIZC

Negate (twos complement) accumulator

A=-p
Addressing Mode Opcode Bytes Cycles
implied 42 1 _ 2

The "N" or Negative flag will be set

System Specification for C65 Fred Bowen : - March 1;.1991

The NEG or "negate" instruction performs a2 two’s-complement inversion
of the data in the accumulator. For example, 1 becomes -1, -5 becomes 5, etc.
The same can be achieved by subtracting A from zero,

if the accumulator bit 7 becomes

& 1. Otherwise it is cleared. The "2Z" or Zero flag is set if the accumulator

is {(and was) zero.

Flags
NVEBDIZC

No-operation

Addressing Mode Opdode Bytes Cycles
implied EA 1 17

The NOP no-operation instruction has
a MAP opcede. Then its is inteérpreted as a
{See EOM) ' A '

Flags
NVEBDIZC

- e o e w oEm

NOP

no effect, unless used following
EOM end-of-map instruction. '

System Specification for C63 Fred Bowen March 1, 1991

Or memory logically with accumulator CRA
A=3.or.M
Addressing Mode Abbrev, Opcode
immediate MM 09
base page BP 05
base page indexed X BP, X 15
absolute) ABS oD
absolute indexed X ABS, X iD
absolute indexed Y _ ARS,Y 19
base page indexed indirect X (BP,X) 01
base page indirect indexed Y (BP),Y. 11
base page indirect indexed 2 (BP},2 i2
Bytes Cycles Mode
2 2 . immediate .
2 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or Z

The ORA instructions perform a logical "or" between data bits fetched
from memory and the accumulator bits. The results are then stored in the
accumulator. For either accumulator or corresponding memory bit that is a
logical 1's, the result is a 1. Otherwise it is 0.

, The "N" or Negative flag will be set if the bit 7 result is a 1.
Otherwise it is cleared. The "Z" or Zero flag is set if all result bits are
zero, otherwise, it is cleared.

NVEBDTIZC
N----- z -

System Specification for C65 Fred Bowen . March 1, 1991

Pull register data from stack PLA PLP PILX PLY PLZ
Opcode
PLA Pull Accumulator from stack 68
PLX Pull index X from stack FA
PLY Pull index Y from stack 1A
PLZ Pull index Z from stack FB
PLP Pull Processor status from stack 28
Bytes Cycles Mode
1 3 - register

The Pull register operations, first, increment the stack pointer 8P,

.and then, load the specified register with data from the stack.

Except in the case of PLP, the "N" or Negative flag will be set if the
bit 7 loaded is a 1. Otherwise it is cleared. The "Z" or Zero flag is set if
all bits loaded are zero, otherwise, it is cleared. :

In the case of PLP, all processor flags (P register bits) will be loaded
from the stack, except the "B" or "break" flag, which is always a 1, and the
"E" or "stack pointer Extend disable" flag, which can only be set by SEE, or
cleared by CLE instructions.

Flags
NVEBDTIZC
N-==-== Z - (except PLP)
76 ~~32190 (PLP only)

System Specification for C65 Fred Bowen March 1, 1991
Push registers or data onto stack PHA PHP PHW PHX PHY PHZ

FPEA Push Accumulator onto stack

PEP Push Processor status ontc stack
PEW Push a word from memory onto stack
PEX Push index X onto stack

PHY Push index Y onto stack

PEZ Push index Z onto stack

Opcodes
Addressing Mode : Abbrev, PHA PHP PHW PHX PHY PHZ
register 48 08 DA S5A ° DB
word immediate IMMw F4 :
word absolute . ABSw ¥C
Bytes Cycles Mode

1 3 register

3 5 word immediate

3 7 word absolute

These instructions push either the contents of a register onte the
stack, or push two bytes of data from memory (PEW) onto the stack. If a
register is pushed, the stack pointer will decrement a single address. If
a word from memory is pushed ([SP]<-PC{LO), [SP-1]<-PC(HI)), the stack pointer
will decrement by 2. No flags are changed.

Flags
NVERBDIZC

.

Reset memory bits] RMB

M=M.and.-bit

Opcode to reset bit _
60 1 2 3 4 5 6 17 g

07 17 27 37 47 57 671 117

Bytes Cycles Mode
2 4 base-page

These instructions reset a single bit in base—page memory, as'specified
by the opcode. Ne flags are modified.,

‘Flags
NVEBDIZC

System Specification for C65 Fred Bowen March 1, 1991

Rotate memory or accumulator, left or right ROL ROR ROW

ROL Rotate memory or accumulator left throught carry
ROR Rotate memory or accumulator right throught carry
ROW Rotate memory (word) left throught carry

: Opcodes
Addressing Mode ' Abbrev. ROL. ROR ROW
. register (A) 2A 6A
base page BP . 26 66
base page indexed X BP, X 36 76
absolute ABS 2E 6E EB
absolute indexed X ABS, X 3E 7E
Bytes Cycles Mede

1 1 register

2 4 base page {(byte) non-~indexed, or indexed X

3 5 absolute non-indexed, or indexed X

2 6 absolute (word)

The ROL instructions shift a single byte of data in memory or the ac-
cumulator left (towards the most s;gnlflcant bit) one bit pesition. The state
of the "C" or “carry" flag is shifted into bit 0

The "N" or Negative bit will be set if the result bit 7 is {operand bit
6 was) a 1. Otherwise, it is cleared. The "2" or Zero flag is set if ALL -
result bits are zero. The "C" or Carry flag is set if the blt shifted out is
(operand bit 7 was) a 1. Otherwise, 1%_15 cleared.

The ROR instructions shift a single byte of data in memory or the ac-
cumulator right (towards the least significant bit) one bit position. The
state of the "C" or "carry" flag is shifted into bit 7.

The "N" or Negative bit will be set if bit 7 is (carry was) a 1.
Otherwise, it is cleared. The "2" or Zero flag is set if ALL result blts are
zero. The "C" or Carry flag is set if the bit shifted out is (operand bit 0
‘was) a 1. Otherwise, it is cleared. X

The ROW instruction Shlfts a word (two bytes) of data in memory left
(towards the most s;gnlflcant bit) one kit position. The statedf the "C" or
‘carry” flag is shifted into bit 0.

The "N" or Negative bit will be set if the result bit 15 is (operand bit
14 was) a 1. Otherwise, it is cleared. The "Z" or Zero flag is set if ALL :
result bits (both bytes) are zero. The "C" or Carry flag is set if the bit
shifted out is (operand bit 15 was) a 1. Otherwise, zt is cleared. :

System Specification for C65 Fred Bowen March 1, 1991

Return from BRK, interrupt, kernal, or subroutine ' kII-REN RTS
Operation description Opcode bytes cycles
RTI Return £from interrupt 40 1 5 P,PCw<{SP), SP<SP+3
RTN #n Return from kernal 62 2 7 PCw< (SP)+1, SP<SP+2+N
RTS Return from subroutine 60 1 4 . PCw<({SP)+1,SP<SP+2

The RTI or ReTurn from Interrupt instruction pulls P register data
and a return address into program counter bytes PCL and PCE from the stack.
The stack pointer SP is resultantly incremented by 3. Execution continues
at the address recovered from the stack. : '

Flags
NVERDIOZC :
76 --3210 (RTI only)

The RIS or ReTurn from Subroutine instruction pulls a return address
into program counter bytes PCL and PCH from the stack. The stack pointer SP
is resultantly incremented by 2. Execution continues at the address recovered

+ 1, since BSR and JSR instructions set the return address one byte short of
the desire return address.

The RTN or ReTurn from kerNal subroutine is similar to RTS, except that
it contains an immediate parameter N indicating how many extra bytes to discazrd
from the stack. This is useful for returning from subroutines which have
arguments passed to them on the stack. The stack pointer SP is incremented by
2 + N, instead of by 2, as in RTS.

Flags

1 m
I 1

=
ol <

DIzZC
> - - - (RTN and RTS)
3210 (RTI)

System Specification for C65 Fred Bowen - " March 1, IQQi

Set memory bits . : 5MB

M=M.or.bit

Opceode to set bit
0 1 2 3 4 5 € 7

87 97 A7 B7 C7 D7 E7?7 F7

Bytes Cycles . Mode
2 4 base-page

These instructions set a single bit in base-page memory, as specified
by the opcode. No flags are modified.

Flags
NVEBDIZC

Store registers . . STA STX STY STZ

STA Store Accumulator to memory M<a

STX ~ Store index X to memory M<X
STY Store index Y to memory M<Y
ST2 Store index Z to memory M<Z
' Opcodes
Addressing Mode - Abbrev. - BTA S8STX STY S§TZ
> .
base page BP 85 Bé6 84 64
base page indexed X _ BP,X 95 94 74
base page indexed Y ' BP,Y - : 86
absolute ' ABS 8D 8E ac ac
absolute indexed X : ABS, X SD 8B SE
absolute indexed Y ARS, Y 99 9B '
base page indexed indirect X (BP,X) Bl
base page indirect indexed Y (BP),Y g1 .
base page indirect indexed Z (BP),2Z 92
stack vector indir indexed Y {(é¢,8P),Y 82
Bytes Cycles Mode
2 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or 2
"2 6 stack vector indirect indexed Y

These instructions store the specified register to memory. No flags
are affected.

Flags -
NVEBDIZC

- e e em o e

System Specification for C65

Transfers (between registers)

Operation Flags
Symbol -Code NVEBDIZC
TAB 5B = = m e = - -
TAY, ----AA N=- === z -
TAY A8 N- ===~ - Z -
TAZ 4B N- === - Z -
TBA 7B N« ==« - Z -
TSX BA Ne-w=--- Z -
TSY 0B N-~=-- - Z -
TR 8a N- === - -
TXS) T
TYA 28 N~ === - Z -
TYS b R
TZA 6B N- === - Z -

affect the flags as follows. The "N"
value moved is negative (bit 7 set),
"zero® flag will be set if the value
is cleared. Any transfer to SPL or §

Request is enabled,

TYS opcodes. Taking this
interrupts from occuring
stack pointer bytes, caus

L B B N

AR EREE SRS L L LTS EEETES R T

Mode
register

Cycles

Bytes
1 1

Fred Bowen

March 1,

TAB TAX TAY TAZ.
. TBA TSX TSY TXA
TXS Txh TYS Tza

Transfer

from to
accumulator base page reg
accumulator index X reg
accumulator index Y reg
accumulator index Z reg

base page reg

accumulator

stack ptr low index X reg
stack ptr high index Y reg
index X reg accumulator
index X regq stack ptr low
index Y reg accumulator
index Y reg stack ptr high
index 2 reg accumulator

or "negative" flag will be set if the

otherwise,

moved is ze

PH will not

If you are using'Non—Maskable—Interrupts,
and you want to change BOTH stack
pointer bytes, do not put any code between the TXS and

it is cleared. The "Z" or
ro (all bits 0), otherwise,
alter any flags.

*************t***************************************t******

WARNI%?

or Interrupt

stack data to an unwanted area.

*
*
n
*
*x
precaution will prevent any *
between the setting of the two *
ing a potential for writing *
*
*

1991

These instructions transfer the contents of the specified source register:
to the specified destination register. Any transfer to A, X, Y, or 2 will

it

P

System Specification for C65 ' Fred Bowen March 1, 1981

Test and reset or set memory bits N TRB TSB -

TRB Test and reset memory bits with accumulator (M.or.A),M<M,and.-A
TSB Test and set memory bits with accumulator (M.or.A},M<M.cr.A

: Opcodes
Addressing Mode Abbrev. TRB TSB
base page . BP 14 04
absolute _ ABS _ ic oc

These instructions test and set or reset bits in memory, using the
accumulator for both a test mask, and a set or reset mask. First, a logical

.AND is performed between memory and the accumulator. The "Z" or "zero" flag

is set if all bits of the result of the AND are zerc. Otherwise it is reset.

The TSB then perfotms a logical OR between the bits of the accumulator
and the bits in memory, storing the result back into memory.

The TRB, instead, performs a logical AND between the inverted bits of
the accumulator and the bits in memory, storing the result back into memory.

Bytes Cycles Mode
2 4 base page non-indexed
3 5 absolute non-indexed
Flags
NVEBDIZOC
—————— Z_.

System Specification for C65 Fred Bowen March 1, 1881

2.3.7.6 4502 Opcode Table

1

2

3

4

5

6

A

B

C

D

E

P

BREK

ORA
INDX

cLe

SEE L

TSE
A

ORA
Zr

ASL
ZP

PHP

ORA
MM

ASL

rsy L

ISB
ABS

ORA
ABS

ASL
ABS

BBRO
zp

BPL

ORA
INDY

ORA
INDZ

oL L
WREL

TRB
ZrX

ORA
ZPX

ASL
ZPX

CLC

ORA
ABSY

INC.

Nz U

ABS

ORR
ABSX

ASL
ABSX

BER1
p

JSR
ABS

AND
INDX

JsrY
IND

JsrL
INDX

BIT
A4

AND

ROL

PLP

AND

ROL

rysl

BIT
ABS

ABS

ROL
ABS

BBR2

|BMI
REL

AND
IRDY

AND
INDZ

BIT

2PX

AND
2PX

ROL
ZPX

SEC

AND
ABSY

DEC

DEZL

BIT
ABSX

AND
ABSX

ROL
ABSX

BBR3
2P

RTI

ECR
INDX

NEG

ASRL

ZP

ECR
ip

LSR 1

ZP

PHA

EOR

LSR

maz L]

ABS

ECR

LSR

BBR4
Zp

BVC
REL

EOR
INDY

ECR
INDZ

asrl

ZPX

EOR
ZPX

LSR
2pX

CLI

EOR
ABSY

PRY

TAB L

map

EOR
ABSX

LSR
ABSX

BBRS
Zp

RTS

ADC
INDX

RTNL

STZ

ADC"

ROR

PLA

ADC

ROR

TZAL

IND

ADC

ROR

BBR6

BVS

ADC
INDY

ADC
IND2

STZ
ZPX

ADC
ZPX

ROR
ZPX

SE1

4ADC

ABSY

PLY

TBAL

INDX

ADC
ABSX

ROR
ABSX

BBR7?
ZP

. '|BRU
REL

STA
INDX

sTall

IDSP

STY
Zp

STA
ZP

STX
zp

DEY

BIT
MM

X2

sty

ABSX

STY
ABS

STA
ABS

STX
LBS

BBS{
A

BCC
REL

STa
INDY

STA
IND2

STY
2pX

STA
ZpX

STX

2Pt

TYA

STA
ABSY

TXS

STXL
"|ABSY

STt2
ABS

5Ta
ABSX

5712
ABSX

BBS1
VA

Loy
IMM

LDA
INDX

LbX
MM

LDY
ZP

Lba
ZP

LDX
ZP

SMB2
Zp

TaY

LDAa
IMM

TAX

1oz

ABS

LDY
ABS

LDa
ABS

LDX
ABS

BBS2
ZP

BCS
REL

Lba
INDY

LDA

INDZ

LDY

424

LDA
ZPX

LDX
2PY

SMB3
Zp

CLv

LDa
ABSY

TSX

LDZL

ABSX

LpY
ABSX

Loa
ABSX

LpX
ABSY

BBS3
p

CPY
MM

INDX

cpzl

i

CPY
P

CMp
A

DEC
Zp

SMB4

INY

M

DEX

aswl
{aBs

cry
ABS

ABS

DEC
ABS

BBS4
2P

BRE
REL

INDY

CMP
IRDZ

cpz L

YA

cMP
ZPX

DEC
2PX

CLD

ABSY

PHX

PHZL

ABS

cpz]

ABSX

DEC
ABSX

BBSS
zp

cex
MM

SBC

INDX |

1oal
IDSP

CPX
7P

SBC
Zp

INC

zr

INK

SBC
IMM

EOM
NOP

ROWL

ABS

CPX
ABS

5B8C
ABS

INC

(ABS

BBS6
Zp

REL

BEQ

SBC
INDY

3BC
INDZ

PHDL

Im

SBC
2PX

INC
2PX

SED

SBC
ABSY

PLX

PLZL

ABS

prp

SBC
ABSX

INC
ABSX

BBS?

System Specification for C65 : Fred Bowen . - SN March 1, 1991
2.4 The C5G 4567 System/Video Controller

_2.4.1 Description

The CSG 4567 is a low-cost high-peformance system/video centroller,
designed to be used in a wide variety of low-end home-computer type .
systems ranging from joystick controlled video games to high-end
home-productivity machines with built-in disk drives and monitor. 'The
4567 was designed with Commodore-64 .{C64) architecture as i subset of
its advanced features. In addition to having all of the C64 video .
modes, it also supports the character attributes =~ blink, bold,
reverse vzdeo, and underline, and can display any of the new or old
video modes in 80 column or 640 horizontal pixel format, as well as
the older 40 column 320 pixel format.

A new "bitplane" video mode was added to allow the displaying of true
bitplane type video, with up to eight bitplanes in. 320 pixel mode and
up to four in 640 pixel mode. The 4567 can also time-multiplex the
bitplanes to give a true four-color 1280 pixel picture. Vertical
resolution is maintained at 200 lines as standard, but- can be doubled
to 400 with interlace. _

System Specification for CgS . Fred Bowen

2.4.2 CSG‘456? Pin Assignments

PSYNC 74
CASS 73
DISK* 72
MEMCLE 71
vCe 70
Do 69
EO 68
D1 67
El 66
D2 65
E2 64
D3 e3
E3 62
D4 61
E4 60
D5 59
ES 58
D6 57
E6 56
D7 55
E7 54

- oo HgD
- OPFOKH<l

~u OmMOH<CH
00~ OM

(*** Pinout will change with 4567R7 **%)

v
c
c

Qamem
| RN N
*HE oW
*ROW
*NO
O
OHOZ
(e R R

' x m
o e]
LA~ - AL B]

[~ REOQOGrHWm

Ll

Oz o
smTOwW
oI O
ZOmMMMmM

= o
M o

8 ‘
4123456789

1 W ~)
[~N- -]
oo

12
13
14
15
16
17
18
19
20
21
CsG 4567 22

= 23
24
25
26
27
28
29
30
31

N n

in < wtn
O

32

[+ < -
o Y-
i b
Lol - W
(AR L]
o Lo

» g <L
MMM W
o
=P oy
N (7.7
e
b Sl [N
(VR N b
[
- P [~
-] (V=% 5%
(Vo3) [XN
-2l -~
=
N
L=
B Wt

* o B3 g =t Ln
<A

CAS*
CASB*
CASA*
RAS*
CPUCLK
DOTCLK
XTAL14
XTALL?
MAQ

MA3
MA4

MAG
MA7
MB7
MBo
MBS
Al6
AlS

March 1, 1991

e)

System Specification for C65 ~ Ered Bowen : . March ir 199i?
2.4.3 CSG 4567 Operation

The 4567 -accesses two 8-bit memory blocks, which are up to 64K.each,
via two 8-bit bidirectional busses. These are D0-D7 and E0-E7. The DO-D7
bus is common with the CPU chip, ROM, SID, and the expansion port’, and is
used for system memory and bitplanes. The E0-E7 port is only connected to
“RAM, This RAM is used for COLOR RAM, attribute RAM, system memory, and
bitplanes.

To access these RAMs, the 4567 has two multiplexed address busses.
These are MAQ-MA7, and MB5-MB7. Lines MAQ-MA4 are common to both 64K banks
of RAM, but MAS5-MA7 go only to bank A, and MB5-MB7 go only to bank B.

There are four types of DMA accesses which the 4567 can perform.
Remember that RAS* is asserted on every memory clock cycle. These are...

mode operation CASA* CASB* ROM*
1, 4567 reading both banks. X X

2. 4567 reading bank "A" X o
3. 4567 reading ROM ‘ _ X

4. 4567 doing refresh.

There are six types of CPU routings to RAM and peripheral devices that
re handled by the 4567,

mode coperation CASA* CASB* ROM*
2. CPU reading bank "A", X
3. CPU reading bank "B". o X
4. CPU writing bank "aA™, X
5. CPU writing bank "B". X
6. CPU reading ROM X
7. CPU accessing I/01, 1/02,

SID, ROMH, ROML

The~e are four basic data routings through the 4567 chip. Three internal
signals rout the data busses. WTREG (write 4567 register) enables routing the
external DO-D7 bus to the internal register data bus. It is normally a legic 1.
When it is brought low, the internal bus disconnects, and the DO-D7 bus outpu
dxrivers turn on. This is for CPU reads of 4567 registers or "B" bank RAM. .

JBMEM (read "B" bank memory) routs the EO-E7 data bus to the inputs of the
'0~-D7 bus output drivers when at logic level 1. This is for CPU reads of "B"
.'bank RAM. When 0, ({(normal)} the inteznal register data bus is routed to the
D0~D7 bus output driver inputs, instead. WTBMEM (write B" bank memory) turns
on the E0-E7 bus drivers, which directly routs the DO-D7 data bus to the E0-E7
bus when 1. This is for CPU writes to the "B"™ bank RAM. When 0, s(normal) the

7-E7 bus is input only. . .. R R LS . . _
mode " operation T Wtreg RdBmem WtBmem
1. CPU write 4567 register, L
CPU access external,
4567 DMA, etc
2. CPU read 4567 register
3. CPU read B RAM
4, CPU write B RAM

{defaunlt)

OO
oHOoOo

0
0
0
1

System Specification for C§5 . Fred Bowen Mareh 1, 1991
DMA and Special CPU Accesses

VME -= Video Matrix Fetch

The 4567 performs Video Matrix Fetches, during displayed video times,
in all of the original VIC-II modes (SCM, MCM, ECM, BMM), This is true for
both 40 and 80 column (320 and 640 pixel) modes. During VMF, ‘the 4567 reads -

'both banks (A & B) of memory over both data busses D0-D7 and EO-E7. The DO-D7

bus provides the video matrix data, EQ-E3 provides color data, and E4-E7
provides character attribute data.)

CDF -- Character Data Fetch

The 4567 performs Character Data Fetches immediately after each Video

.Matrix Fetch in the original VIC-II modes except bitmap mode. During this fetch

Character image data is fetched from ROM or RAM bank A over the D0~D7 bus.
BMF -- BitMap Fetch |

- The 4567 performs Bitmap Data Fetches immediately after each Video
Matrix Fetch, only in the bitmap mode. During this fetch, Bitmap image data
is fetched from RAM bank A over the DO-D7 bus.

BPF -~ BitPlane Fetch

The 4567 can perform Bitplane image fetches during displayed video
times, if the Bitplane mode (BPM} is enabled. The number and position of these
fetches is determined by which bitplanes are enabled. During bitplane fetches,
even numbered bitplane data is fetched over DO-D7 and odd numbered bitplane
data is fetched over EQ-E7. .

RF -- RAM refresh

The 4567 performs six cycles of dynamic RAM refresh aevery scanned video
line. During this time no datza is fetched and CASA* and CASB* are not activated,

SPF -~ Sprite Pointer Fetch

Up to eight Sprite Pointer Fetches can occur each scanned video line.
One SPF is generated for each sprite that is enabled and currently being
displayed. During an SPF, the pointer to the sprite image data is fetched
from the video matrix area of memory for the sprite in question over the
DO-D7 data bus.

SDF -- Sprite Data Fetch
Three Sprite Data Fetches follow each Sprite Pointer Fetch. During

this time, sprite image data for the sprite in question is fetched over
the DO-D7 data bus. S :
DAT -- Display Address Translation

' Display Address Translation, or DAT fetches, are not actually DMA-type
accesses, but rather CPU address redirections to RAM. In this case, the
unmultiplexed address bus is totally separated from the multiplexed address bus.
COL -~ Color RAM accesses ' '

Color RAM is also accessed by the CPU'via an address translation. This
is because color RAM would otherwise be located in the I/0 area. ‘

[Aol

System Specification for C65 Fred Bowen S . March 1, 1991

Contents of the Internal A and B Memozy
Address Busses Prior to Multiplexing

S ignal “vm‘ " |ICDF L] “Bm‘!‘ ﬂBPE‘II IIRFII . "SPF L] L} SDFI" HDAT“ 1] COL“

- —— v —

IAQ vCo RCO RCO RCO RFO SF0 Spo DTO AD

- - e e e o o —— ——— — —— ——— - —— — — ——— e

IAl vCl RC1 RC1 RC1 RF1 - SF1 SD1 DT1 Al
Ia2 vC2 RC2 RC2 - RC2 RF2 SF2 sp2 DT2 A2
IA3 . VC3 DO veo - vCo RF3 1 Sb3 - DT3 - A3
IAd vC4 D1 vCl vCl RF4 1 Sb4 DT4 A4
IAS VC5 b2 .o ve2 vCc2 1 1 SD5 DTS5 A5
IAa6 vCe D3--. VC3 vC3 1 1 Do - DT6 A6
IA7 vC7 D4 vC4e . VvC4 . 1 Dl DT? A7
IAS8 vCa D5 ves VCS 1 1 D2 DT8 - AB
%) vC9 D6 vCe vCce 1 1 D3 DTS A9
7 «AlQ VMO/VC10 D7 vct vCT RES vMO/1 D4 DT1i0 AlQ
i - IAll VM1 CBO ves vCs RF6 VMl D5 DT11 1
IAL2 M2 CBEl vCs vCo REF7 -~ VM2 . D6 DT12 1
IAl3 VM3 CBZ (CB2/VC10 BE13/VCl0 1 VM3 D7 BE13/DT13 1
IAl4 VB0 VBO VBO BE1l4 1 VBO VBO BE14 1l
*Al5 vBl VBl VBl BE1l5 1 VBl VBl BE15 1
Al6 Als Ale Als Al6 RF8 Al6 Ale DT16 1
IB10 0/* * * * * * * * *
IBll 1 * * L * * * * l
IR1?Z 1 % * * * * * * 1
IB13 1 * * BO13/* * VX * BO13/* 1
IBl4 1 * * BOl4 * * * BOl4 1
IB15 1 * * BO1S * * * BO15 1
DMA 1l 1 1 1 1 1 1 0 0

VC = Video Matrix Counter

RC Row Counter

VM = Video Matrix Address

VB = Video Bank Address

CB = Character Generator Bank Address
REF = Refresh Counter

SF = Sprite Pointer Fetch Counter 4
SD = Sprite Data Fetch Counter :
DT = Display Address Translator

BE = Bitplane Even Pointer

BO = Bitplane 0dd Pointer

A = Address QOut = Address In

D = Data fetched from previous fetch

"B" bus contents, same as "A" bus
xxx/yyy = contents for 320/640 pixel modes

-System Specification for C65

Fred Bowen March 1, 1991

Multiplexed Address Bus Generation

The A and B memory address busses are multiplexed 2:1 to generate the
MA and MB multiplexed address busses. Listed below are the prlmary addresses
used to generate the multiplexed row and column addresses.

——— e

COW column
AQ AS
Al Ab
A2 Al
A3 A8
Ad AS
AlQ Al3
All Al4
Al2 AlS
B10O B13
Bll Bl4
B12 B1l5

ROM physical addresses

0000
2000
4000
5000
6000

New area A
Basic

New area B
Character sets
Kernal

ROM can appear (to the 4567) at 1000-1FFF {bank 0)

and 9000-9FFF (bank 2)

The ROM address translates to 5000-5FFF

———

.t

pr =

System Specification for C6S Fred Bowen '~ March 1, 1991

Contents of Memory map based on Loram, Hiram, Game, and Exrom

Area ') i -

LHGE

0IAX

RRMR /ROML, /ROMH . : /ROMH-

AAEO 0000~ 8000- A000~ CO000- DOOO- EQ000-

MM M 7FFF 9FFF BEFF CEFF DFF¥ EFFF

XX01 4KRAM EXT NADA NADA I/0 EXT

001X RAM RAM . RAM RAM RAM RAM

00XxX0 RAM RAM . RAM RAM RAM ° RAM

0100 RAM RAM EXT RAM "1/0 ROM

011X RAM RAM RAM RAM I/0 ROM '

100080 RAM RAM RAM RAM I/0 RAM * CG ROM off
01X RAM RAM RAM RAM I/0 RAM
100 RAM EXT EXT RAM I/0 - ROM |

L1110 RAM EXT ROM RAM I/0 ROM

1111

RaM RAM ROM RAM I/0 ROM

Color Palette ROM Programming

index red green blue fg/bg I Q : Y color

0 0 0 0 0 ¢ 0 0 black

1 15 15 15 1 0 0 1.0 white

2 15 0 0 1 . 60 .21 .30 red

3 0 15 15 i -.60 -.21 .70 cyan

4 15 0 15 1l .28 .52 .41 magenta

S 0 15 0 -1 -.28 -.52 .59 green

6 & 0 15 1 -.32 .31 .11 blue

7 15 15 0 1 .32 -.31 .89 vellow

8 15 6 0 1 .49 0 *.54 orange

9 10 4 0 1 .33 0 .36 brown

1 15 7 7 1 .32 .11 .63 pink

L 5 5 5 1 0 0 .33 dark grey
=2 B 8 8 1 0 Q. .33 medium grey
13 9 15 9 1 -.11 -.21 .84 light green
14 9 9 15 1 =.13 -.12 .64 light blue
15 11 11 11 1 0 0

.73 light grey
4 e

System Specification for C65 Fred Bowen March 1, 1991

Horizontal Sync Counter Events
(assuming HPQS reg=0)

For NTSC the first 390 HCOUNT steps are at half the Primary clock
rate, and 390 are at the primary clock rate, giving 520 counts for 910
clocks. For PAL the first 388 HCOUNT steps are at the slow rate, and 132
are at the faster clock rate, giving 520 counts for 908 clocks.

EVENT Clock +256 /2 - HCOUNT Duration
VSYNC1 START 513 769 384 384 846 59%us
VSYNC1 STOP 449 705 352 352 ‘

VSYNC2 START 58 314 157 157 846 S%us
VSYNC2 STOF . 804 250 W 125 125 '
HSYNC START 513 . 769 384 384 €3 -4.4us
HSYNC STOP 576 832 416 442

HEQUl START 513 769 384 384 36 2.5us
HEQU1 STOP 549 805 402 414 :

HEQUZ2 START 58 314 157 157 36 2.5us
HEQUZ2 STOP 54 350 175 175

BURST START 578 832 416 - 442 47 3,3us
BURST STOP 623 879 439 488 _

HBLANK START 478 T34 367 .367 175 12,2us
HBLANK STOP 653 909 454 518 : '

Horizontal DMA Counter Events

{these are actual counts -- decode 1 count earlier)

Event ECOUNT

HDMAEN START 15 19 (640 mode)

_HDMAEN STOP 335 " 339 (640 mode)

HDEN START 25 32 (38 col)

HDEN STOP 345 336 (38 col)

HPIXEN START . 24 }

HPIXEN STOP 344 ’
SPR GO 358 -
SPR STOP - 359

SPR CLOCK DIS 360

SPR CLOCK ENA 488

SPR DMA START 372 (and EOQL)

SPR DMA STOP 482

REFRESH START 482

REFRESH STOP T 506 : : . '
VINC 370 . -

HRES - 15
“DOG START 16

DOG STOP : 376

SYNCO _ 0

SYNC1 1

SYNC2 3

FAST : 390 NTSC 388 paL

L

System Specification for C65 Fred Bowen March 1, 1991
Vertical Timings

When the vertical position register VPOS is set to zero by the: CPU,‘
it actually is storing a compare value of 128, since the MSB of VPOS is
inverted. This actually corresponds to raster count 256, since the vertical
event counter is counting half-lines. When the vertical event counter
matches the VP0OS register, the vertical sync counter is reset to zero,
Multiply the desired line for each event by 2 and subtract the nominal VPOS
value of 256 to get the desired decode. If the result is negative add the
modulo of the vertical event counter, which is 525 for NTSC and 625 for PAL.
The "line™ in these tables refer to raster lines, where llne 50 is the first
displayed line in a 25 row dlsplay.

NTSC
Event line v count - vpos decode
- VSYNC START 11 22 —234 291
VSYNC STOP 14 28 -228 297
VEQU START B .16 -240 285
VEQU STOP 17 34 =222 303
VBLANK START 8 16 -240 285
VBLANK STOP 28 56 =200 325
EARLY START 64 128 -128 397
EARLY STOP 11 22 ~234 281
LATE START 11 23 -233 292
LATE STOP 3 6 -250 275
PAL -- timings begin 25 lines before NTSC because of 50 extra lines

Event line v count - vpos decode
VSYNC START -14 -29 -285 340
VOYNC STOP -11 -24 -280 345
VEQU START C =17 -34 -290 335 *equ/sync is 15 half- llnes
VEQU STOP -3 -19 - =275 350 *for pal -
VBLANK START -17 -34 -2%0 335
VBLANK STOP 3 . 6 =250 375
EARLY START 39 78 -176 447
EARLY STOP -14 -29 -285 340
LATE START ~14 -28 -284 341

., LATE STOP -22 ~-44 -300 325

Note : EARLY and LATE active concurrently indicate GROSS.

_ivide ratios (including external sync values)

Counter ' Normal Early Late Gross
'NTSC vertical - 525 524 526 540
‘PAL vertical 625 624 626 640
NTSC horiz 910 S08 912

PAL horiz 908 806 810

horiz counter 520 51% 521

System Specification for C65
Number of cycles per line

! In "slow" CPU mode...
Total cycles no video
40 column SCM, MCM, ECM, BMM,
320 pixel BPM, BP0O-BP3 only, or
640 pixel BPM, BPO-BPl only

80 column SCM, MCM, ECM, BMM,
320 pixel BPM, BPO-BP7, or -
€40 pixel BPM, BPO-BP3

Sprites

Examples...

No video on line

40 column text or equiv, BPs. {no sprites)
80 column text or equiv. BPs (no sprites)
B0 column text or equiv. BPs, all sprites

227 memory cycles/line
6 refresh

0-32 sprite
0,40,80,120,160 wvideo

135 95 95 55 55

Fred Bowen

no cost

March 1, 1991

65

)

subtract 40 _ '
subtract 2 per active sprite

65
65
25
9 -- worst case

all sprites (fast)
no sprites (fast)

"all sprites (slow)

fast slow

277 138 total cycles/line

-6 -3 refresh

-32 ~16 sprites

239 115 avail CPU cycles/line (no video)

no T -2 3 4

video fetch fetch fetch fetch
cpucyc 239 199 - 159 119 79
cpucyc 271 231 191 151 111
cpucyc 119 79 79 39 39
cpucyc

no sprites (slow)

N

System Specification for C65 . Fred Bowen . March 1, 1991 .

2,4.4 Programming the new VIC. (4567)

The C4567R6 is a high performance single chip video controller’
designed to bring exceptional graphics to low cost computer and game
systems. It presently is available in NTSC and PAL versions to match
European and Noxth American television standards,

The following are new features that are added as a superset of the
0ld VIC-II video controller functions incorporated in the C4567R6.

a. NewViec mode .

b. 80 column character and 640 horizontal pixel mode
c. Scan interlace and 400 line mode

d. Character attributes (blink, highlight, underline, reverse)
e. Fast clock mode (3.58 wvs. 1.02 MHz)

f. Bitplane mode

g. Color palettes

h. Additional ROM

i, 12808 pixel mode

j. Display Address Translator (DAT)

k. Horizontal and vertical positioning

1. External sync (Genlock)

m. Alternate character set

n. Chroma killer

NewVic Mode

After power-up and reset, the C4567R6 performs as if it were the "old"
VIC chip. In this mode, none of the new features are accessible. The old
VIC II registers appear at addresses $D000-$D3FF, echoed 16 times, every
64 addresses, and any new registers within the 64 byte block will not exist.

To put the C4567R6 _into "NewVic" mode, the user must write first an
SA5 and then a $96 to the KEY register. Once these values have been entered
the C4567R6 will be in "NewVic" mode, and access to the "NewVic" registers
"nd modes will be possible. '

To take the C4567R6 out of "NewVic™ mode, simply write any value to the
KEY register. After doing this, all of the new modes will be disabled. The
registers that were programmed in "NewVic" mode will retain their current
values. It should be noted, however, that since all old modes are available

in new mode, there is little reason to exit new mode. .

J(w[295
(6L > Lo

System Specification for C65 Fred Bowen March 1, 1991

80 Column {character) or 640 Pixel {bitmap'dr bitplane) Mode

You can put the C4567R6 into ™80 Column Mode™ or "640 horizontal pixei
mode™ by setting the H640 bit in control register "B". The normal horizontal
rendering is 40 columns or 320 pixels.)

In 80 column character mode, several things change, The Video Matrix
becomes 2K bytes long, where it used to be 1K in 40 column mode. The charac-
ter color RAM also becomes 2K bytes long. The locations of these areas do
not change from the prior convention, except that the low order video matrix
address bit is not used in 80 column mode. Where the programmer used to have
16 choices for locating the Video Matrix within a video bank, in 80 column
mode there are only 8 choices. .

Although the color RAM doubles in size to 2K bytes, the area provided

-for color RAM in the I/0 map only allows for 1K of color RAM. .To read or write

the second 1K of color RAM requires that you move CIAl, CIAZ, I/01, and 1/02

out of the way. To do this, set the "COLOR RAM @DCOQ"™ bit in Control Register
"An »

In 640 pixel bitmap mode, similar changes occur. The video matrix and
color RAM double in size and are positioned in the memory map exactly as is
done in 80 column character mode. The bitmap must now also double in size
from 8K to 16K bytes. Because the total memory that the video matrix and the
bitmap would require now exceeds the normal 16K byte video bank size, the
videc bank size has been doubled from 16K to 32K for the bitmap only. The
least significant video bank bit is ignored, and the high order character
generator bank bit selects which half of the 32K video bank that bitmaps

will be fetched from. The videc matrix is still fetched from the normal 16K
video bank. o

In 80 column or 640 pixel mode, the sprite pointers are at the end
of the 2K byte video matrix, where they used to be at the end of the 1K byte
video matrix, in 40 column or 320 pixel mode. The size, location, and
resolution of sprites are not affected by any of the mode switches.

.

System Specification for C65 Fred Bowen . March 1, 1991-

Interlace, and 400 Line Vertical mode

The C4567R6 can interlace scan lines to give a true NTSC, 525 line screen
(625 lines on PAL versions), although the default, however, is a. 262 line non-
interlaced screen (312 lines on PAL versions). Set the INT bit in control
register "B" to a "1" if you want interlacing.

The C4567R6 can also give a 400 line vertical resolution, which is useful
in the new Bitplane mode. Set the V400 bit, and the INT bit in control
register "B" to a "1" to enable 400 line bitplanes. (see Bitplanes, below)

The V400 switch will have no effect if the display is nét interlacing. Also,
although interlacing is permitted in all of the old video modes, the same
data will appear on both odd and even rasters, even if the V400 switch is on.

280 Horizontal Pixel mode

The C4567R6 supports ultra-high resolution graphics by permitting the
programmer to use 1280 pixel lines. This is enabled by setting the H1280
and H640 bits in control register "B"™ to a "1",

The 1280 pixels are acheived by time-multiplexing bitplane bits. This
.S done by substituting the pixel clock for bitplane 7. This means that for
the first half of each pixel, the color palette will be fed the normal color
index. For the second half of the same pixel, it will fed the normal index,
plus 128. To utilize this feature, the user must program the color palette
to perform the multiplexing function.

The H1280 bit can also be set H640 off. This is a unique mode that
allows the use of 320 and 640 horizontal pixel bitplanes simultaneously..

 System Specification for C65 Fred Bowen March 1, 1991

Character Attributes

' In NewVic mode, the C4567R6 supports four new character attributes which
can be enabled by setting the ATTR bit in Control Register "B", These are
Blink, Highlight, Underlined, and Reverse Video characters. Any combination

of these attributes can be enabled on a character by character basis, at any
time. Certain combinations will have varying effects. (See table below)
Attributes can also be applied to bitmap mode, and, to a. limited extent, to

the new bitplane mecde. (see Bitplanes, below)

Blink is enabled by setting bit 4 of the Color RAM location for each
character requiring this attribute. The Blink attribute will either flash the
character on and off, or will alternately enable and disable the other
attributes, if any are selected. The blink rate is approximately 1 Hz.

- Reverse Video is enabled by setting bit 5 of the Color RAM location for
each character requiring this attribute. Reverse Video is achieved by simply
~complementing the character image data for each character with this attribute.
If the character is also underlined, the underline will be reversed, as well.
Highlighted characters also will reverse. Blink, if enabled, will alternately
‘enable and disable this attribute.

Highlight is enabled by setting bit 6 of the Color RAM location for each
character requiring this attribute. Highlight is achieved by adding 16 to the
color index value. As in the past, the character color is determined by the
index value stored in bits 0-3 of the color RAM. In many respects, bit 6 is
merely another color select bit. What differs is that the Blink attribute
can be used to blink between the "normal" color; and the "highlight"™ color.
Both the character image, and its background can have unique highlight colors.

To _use the highlight attribute, effectively, color palette locations 16
through 31 should be programmed to "hfbhlight“ colors. (see Palette, below).
Highlight colors don’t have to be related to normal colors, but can be anything.

Underline is enabled by setting bit 7 of the Color RAM location for each
character requiring this attribute. Underline is accomplished by forcing "1¥
character image data on the eighth raster line for each character with this
attribute. If the Blink attribute is also selected, the underline will blink.

System Specification for C65 Fred Bowen March 1, 1991

Summary of Character Attributes and their Effects

Underline Hlllte Reverse -Blink Effect
off cff "off off - normal character
off off off on. blinking character
off of £ on off reverse video character
of £ of £ on on alternate reverse/normal
off on off off highlight character -
off on - off on alternate highlight/normal
off on on . off highlight, reverse wideo
off on- on on alternate hlghlxght-reverse/normal
on off off off underlined character
on off off T on normal char with blinking underllne
on off on off underlined reverse-video
on off on on . alternate underline-reverse/normal
on on off off highlight underlined character
on on off on alternate highlight-underline/normal
on on on off highlight underlined reversed

on on on on alternate hilite-underlined-rev/normal

System Specification for C§5 Fred Bowen : - March 1, 1991

Fast Clock

To permit the new system to run certain types of the old C64 software,
the C4567R6 provides a normal (slow) CPU clock with a long term (63us) average

.0f 1.02 Mhz (exactly the C64 clock rate). This is accomplished by setting up

a pattern of 1.79hz (560ns) cycles to give a total of 65 cycles be horizontal
scanning line (also, like C64). In addition, logic is provided on the C4567R6
to determine when the microprocessor chip is executing an enhanced opcode, and,
if so, subtracts a clock cycle from it. . '

By setting the FAST bit in Control Register "B", you can instruct
the C4567R6 to clock the CPU at 3.58 Mhz, and permit the microprocessor to

- execute its enhanced instructions at full speed. This can increase CPU speed

up to 400%.

BitPlane mode

In addition to the usual video modes provided by the old VIC chip,
the C4567R6 provides a bitplane mode, which allows up to eight bitplanes to

be used in the 320, or up to four bitplanes to be used in the 640 horizontal
pixel modes. '

Enabling BitPlane mode is done by setting the BPM bit in Control
Register "B".. Doing this will override all of the other video modes, To
specify which bitplanes (0-7) to use, set the corresponding bit for each
bitplane you want, in the Bitplane Enable register. Bitplane mode may be
used with sprites. Bitplane 2 is the foreground/background plane used for
sprite/background collision detection and priority.

The bitplanes, whether enabled, or not, provide the eight color value
bits used to define what color will be displayed for any pixel on the screen.
Bitplane 0 provides the least significant bit of the color value, and bitplane
7 provides the most significant bit. Bitplanes that are not enabled will.
contribute a "0" to their bit position in the color select code, unless the
complement bit for that bitplane, in the complement register, is set.

. Any bitplane’s data can be inverted, whether or not the bitplane is
enabled by setting its respective bit in the Bitplane Complement register.
Inversion on unenabled bitplanes will cause them to contribute a "1%

~instead of their usual "Q~.

System Specification for C65 Fred Bowen March 1, 1991 .

In BitPlane mode, the C4567R6 does not use the Video Bank select bits,
like the old VIC chip did. Instead, You can specify which 8k block (in 320
mode}, or which 16k block (in 640 mode) of memory you want a bitplane to
come out of. Specify where you want the bitplanes to be fetched from, using
Bitplane Address registers 0 through 7. Note, however, that the least
significant bits of these registers are ignored in 640 pixel mode, and that-
register 4 through 7 are never used in 640 pixel mode. Even numbered bitplanes
can only be fetched from memory bank 0 (addresses 0-~-FFFF hex), and odd :
numbered bitplanes can only be fetched from memory bank 1 (addresses 10000-
1FFFF hex). So, the bitplane pointers define which section within the
confined bank that bitplane data will be fetched from. ‘ :

In the Bitplane address registers, there are two bit-fields. One field
of bits is for the even vertical scan, and the other field of bits is for the
odd scan. The odd scan bits are not used unless both INT and V400 bits are
set in control register "B". :

Attributes can be enabled in bitplane mode by setting the ATTR bit in
control register "B". If this is done, the most significant nybble of bytes
fetched for bitplane 3 will contain the attribute specification for each
8 by 8 pixel cell, exactly as is done in character modes. One exception is
that the "hilite" attribute will be disabled. The attributes are only applied
“o bitplane 2, which is also the foreground/background plane for sprite
sollisions and priority purposes.

- To properly utilize this feature, bitplane 2 must be enabled to
provide attributed bitplane data, and bitplane .3 must be disabled, since it
will be providing attribute data. Data fetches for the attribute data will
occur, because bitplanes 2 and 3 are both fetched in the same memory cycle.
You may also enable any other bitplanes as needed. Bitplane 2, and any other
bitplane may be complemented, but complementing bitplane 3 will only cause its
bit weight to contribute a "1", and will not invert the attribute data.

Note:

Addresses 1FBOO-1FFFF hex are the Color and Attribute RAM used in
.the old video modes. You can use this area for bitplane if you do not plan
on switching between old and new video modes and expect the data for both
wdes tc be there. - ‘

System Specification for C65 Fred Bowen . March 1, 1991

Color Palette

The C4567R6, allows the programmer to use the sixteen standard "C64"
colors, or define up to 256 custom colors and/or use the palette fo perform
boolean operations on the bitplane data. The C4567R6 incorporates a 16 word
palette ROM and a has a 256 word palette RAM. Each palette location is an
index, which can specify one of sixtten possible intensity values (4 bits)
each, of Red, Green, and Blue primary colors, plus a single contrel bit (FGBG)
which can be used for foreground/background control for video mixing appli~
cations, or to drive a separate monochrome screen. '

The first 16 locations of the palette default to the C64 colors in ROM.
The remaining 240 locations are programmable RAM. The first 16 locations can
also be replaced with RAM, however, by setting the PAL bit in control register
"B". All old video modes, including sprites and exterior, can only access the
lowest 16 palette locations (except hilite cells), so you may want to reserve
these indices for such features. :

Only bitplane mode can make full use of all palette locations. Even when
less than eight bitplanes are used, the bitplane complement bits of the unused
bitplanes can be used to specify which part of the palette is to be used. This
feature allows the programmer to define multiple sub-palettes, which can be
switched between quickly, or to specify an offset in the color table for
the bitplanes, allowing separate colors for exterior and sprites.

To set the color palette, the user must simply write to the color palette
RAM. Addresses D100-D1FF (hex) program the 256 Red values, addresses D200-DZFF
(hex) program the 256 Green values, and addresses D300~-D3FF (hex) program the
256 Blue values. All 256 locations of both the blue and green palettes are only
4 bits wide, so the upper four data bits do nothing., Bit 4 of every red palette
location is the FGBG programming bit, the remaining 3 bits are not used. The
palette locations are not readable by Xhe CPU.

System Specification for C65
C4567R6 Registers

Fred Bowen

MEMORY MAP SELECT AND ENABLE REGISTERS

(EN BIT MUST BE 1 FOR SELECT TO BE 0)

March 1, 199i.

"4510" PORT
EN2 EN1 ENO | 0000
CHREN | HIRAM | LORAM | 0001
VIC-II MODE REGISTEﬁS

— S$SDO00+ .
sox? | s0x6) s0x5 | sox4 | sox3 | sox2 | soxt | soxo | 00 SPRITE
soY7 | sové | s0Y5 | sovs soy3 | soyz | sovi | sovo | 01 SPRITE
S1X7 | six6 | s1x5 | six4 | six3 | six2 | six1 | sixo | 02 spriTE
s1y7 | sivé | s1ys | sive | si1v3 | siy2 | sivi | sive | 03 SPRITE
S2X7 | s2x6 | s2x5 | s2x4 | s2x3 | s2x2 | s2x1 | s2x0 | o4 sprITE
s2y7 | s2vé | s2v5 | s2va | s2y3 | s2v2 | s2v1 | s2Y0 | 05 SPRITE
S3X7 | S3x6 | S3X5 | S3x4 | S3x3 | s3x2 | S3x1 | S3x0 | 06 SPRITE
S3Y7 | s3Yé | S3Y5. | s3v4 | s3v3 | s3y2 | s3yr | s3vo | 07 semrrTe
547 | $4X6 | S4xXS | s4x4 | S4X3 | S4x2 | s4x1 | S4x0 | 08 SPRITE
S4Y7 | s4vé | s4Y5 | s4ava s4y3 | say2 | s4y1 | s4Y0 | 09 SPRITE
S5X7 | S5X6 | S5X5 | $5X4 | S5X3 | S5X2 | S5X1L | SS5XO | OA SPRITE
ssY7 | ss¥6 | ssys | ssv4 ss¥3 | ssy2 | ssyi | ssyo 0B SPRITE
S6x7 | S6x6 | S6X5 | s6x4 | S6x3 | sex2 | sexi | S6X0 | OC SPRITE
S6Y7 | S6Y6 | S6YS | S6Y4 | S6Y3 | S6Y2. | S6Yl | S6Y0 4 OD SPRITE
S7X7 | S7X6 | S7x5 | $7x4 | S7x3 | s7x2 | s7x1 | S7x0 | OE SPRITE
S7Y¥7 | s7Yv6 | 87¥5 S7Y4 $7Y¥3 | 572 S7Y1 87Y0 OF SPRITE
S7X8 S6X8 S5X8 S4X8 S3x8 $2X8 S1X8 S0X8 10 SPRITE

M o - U s s W W NN M e O O
(.- T T - - L R o SR - o S-S - =S

|
!

System Specification for C65

Fred Bowen

March 1, 1991

RCS ECM BMM BLNK | RSEL | ¥scr2 | vscrl | yscro | 11
RC7 RC6 RCS RC4 RC3 RC2 RC1 RCO | 12
LPX7 | LPX6 | 1Px5 | Lpx4 | rpx3 | Lpx2 | ex1 | mexo | 13
LPY7 |-LPY6 | LPYS | Lpy4 | 1py3. | rpy2 | mevi | revo | 14
SE7 SE6 SES SE4 SE3 SE2 SE1 SE0 | 15
RST = | MCM CSEL | XSCL2 { XSCLl | XSCLO | 16

SEXY7 | SEXY6 | SEXY5 | SExv4 | SEXY3 | SEXY2 | SEXY1 | SEXY0 | 17
vsl3 | vsi2 | vsil | vsi0 | c¢B13 | cBi2 | cBi1. 18
IRQ LPIRQ | Issc | 1sBc | RIRQ | 19
MLPI | MISSC | MISBC | MRIRQ | 1A

' BSP7 | BSP6 | BSPS | Bse4 | Bse3 | Bsez | mseir | mspo | 1s
ScM7 | scMé6 | scM5 | scMa | scM3 | scM2 | seMi | scmo | 1c
SEXX7 | SEXX6 | SEXx5 | SExx4 | SExx3 | sExx2 | sExx1 | sExxo | 1p
ssc7 | ssc6 | sscs5 | ssc4 | ssc3 | ssc2 | sscy | ssco | 1E
SBC7 | SBC6 | SBCS | sBC4 | SBC3 | sBcz | smci | sBco | iF
BORD3 | BORD2 | BORD1 | BORDO | 20

BKOC3 | BKOC2 | BKOC1 | BKOCO | 21

BKIC3 | BK1C2 | BK1Cl | B10OCO | 22

] BK2C3 | BK2C2 | BK2C1 | BR2CO | 23

BK3C3 | BK3C2 | BK3c1 | BR3CO | 24

sMoc3- | smoc2 | smoc: | smoco | 25

sM1C3 | sMicz | smic1 | smico | 26

soc3 | soc2 | soct | soco | 27

S1C3 | sic2 sic1 S1CO 28

s2c3 | s2c2 | s2ct | s2co | 29

s3c3 | s3c2 | s3c1 | s3aco | 2a

sac3 | s4c2 | sacy | saco | 28

's5¢3 | ssc2 | ssc1. | ssco | 2¢

s6c3 | sec2 | séc1 | seco | 2p

s7¢3 | s1c2 | s7c1 | s7c0 | 2E

Y SCROLL
RASTER CNT
LITEPEN X
LITEPEN Y
SPRITE ENA
X SCROLL -
SPR EXP Y
VS/CB BASES

INTERRUPTS

INT MASKS
BK/SPR PRI
MC SPR

SPR EXP X
SPR-SPR COL
SPR-BK COL
EXT COLOR
BKO COLOR
BK1 .COLOR
BK2 COLOR
BK3 COLOR
SPR MCO
SPR MC1
SPRO COLOR
SPR1 COLOR
SPR2. COLOR
SPR3 COLOR
SPR4 COLOR
SPRS COLOR
SPR6 COLOR
SPR7 COLOR

o

System Specification for CE5

Fred Bowen

VIC-III MODE REGISTERS

March 1, 1991.

KEY7 | XKEY6 | XEYS | KEY4 | XEY3 | KEY2 | KEY1 | KEY0 | 2F KEY
ROM CROM | ROM ROM |- ROM PAL - | EXT .| CRAM | 30 CONTROL A
QE000 | @9000 | @C000 |.@A000 | @8000 SYNC | @DCO0 :
#640 | FasT | artr. | mem v400 | H1280 | MONO | INT |.31 CONTROL B
BP7EN | BPGEN | BPSEN | BPAEN | BP3EN | BP2EN | BP1EN | BROEN | 32 BP ENABS .
BOAD15 |BOAD14 [BOAD13 BOAD1S |BOAD14 |BOAD13. 33 BITPLANE 0
ODD oDD QDD EVEN EVEN EVEN ADDRESS
1AD15 |B1AD14 |B1AD13 BLAD1S |B1AD14 |B1AD13 . 34 BITPLANE 1 -
oDD oDD oDD EVEN | EVEN | EVEN ADDRESS
B2AD15 {B2AD14 {B2AD13 B2AD15 BZAD14' B2AD13 35 BITPLANE 2
ODD oDD oDD EVEN - | EVEN | EVEN ADDRESS
23AD1S [B3AD14 B3AD13 B3AD15 |(B3ADY4- |B3AD13 36 BITPLANE 3
oDD OoDD oDD EVEN EVEN EVEN ADDRESS
B4AD15 |B4ADl4 |[B4AD13 B4AD1S |B4AD14 B4AD13 37 BITPLANE 4
QDD 1 QDD QDD EVEN EVEN EVEN ADDRESS
BSAD15 {BSADl14 |BSAD13 B5AD1S |[B5ADl4 |B5ADL3 38 BITPLANE 5
ODD QDD oDbD EVEN EVEN EVEN ADDRESS
B6AD1S [B6AD14 |B6ADL3 B6AD1S5 |BRE6AD14 |B6AD13 39 BITPLANE 6
oDD obD oDD EVEN EVEN EVEN ADDRESS
B7AD15 |B7AD14 |B7AD13 B7AD1S |B7AD14 |B7AD13 3A BITPLANE 7
oDD ODD oDD EVEN - | EVEN | EVEN ADDRESS
BP7COMP | BR 6COMP | BRSCOMP | BP4COMP | BP 3COMP | BP2COMP | BP1COMP | BPOCOMP| 3B BP COMPS
BPYS | BPX6 | BPXS5 | mPx4 | BEX3 | mPX2 | BEX1 | BEX0 | 3C BITPLANE X
BPY?7 BPY6 BPYS5 BrpY4 BPY3 BPYZ2 BPY1 BPYQ 3D BITPLANE x
HPOS7 HPOS6 HPOSS BEPOS4 HPOS3 HPOS2 HPOSI HPOS{ 3E HORIZ POS
vPOS7 | VPOS6 | VPOSS | vPos4 | vPos3 | VPOS2 | VPOS1 | VPOSO | 3F VERT POS.
, _

~D0O00+

e I - T T T G S R SR

System Specification for C6S5 Fred Bowen - March 1, 1991
DAT MEMORY PORTS
' ~DOOO+
BOPIX7 |BOPIX6 |BOPIXS |BOPIX4 |BOPIX3 |BOPIX2 |BOPIX1 |BOPIXO |° 40 BITPLANE
BIPIX7 |BIPIX6 |BIPIXS5 |BIPIX4 |B1PIX3 |B1PIX2 |BlPIX1 BIPIX0 | 41 BITPLANE
BZPIX7 |B2PIX6 |B2PIXS |B2PIX4 |B2PIX3 |B2PIX2 |B2PIX1 |B2PIX0 | 42 BITPLANE
B3PIX7 |B3PIX6 |B3PIXS |[B3PIX4 |B3PIX3 |B3PIX2 |B3PIXIL B3PIX0 | 43 BITPLANE
B4PIX7 |B4PIX6 |B4PIXS |B4PIX4 |B4PIX3 |B4PIX2 |B4PIX1 {B4PIXO 44 BITPLANE
B5PIX7 |BSPIX6 |BSPIXS |BSPIX4 |BSPIX3 |BSPIX2 |BSPIX1 |BSPIXO 45 BITPLANE
B6PIX7 |B6PIX6 |B6PIXS |B6PIX4 |BEPIX3 |B6PTX2 |B6PTX1 B6PIX0 | 46 BITPLANE
BTPIX7 |B7PIX6 |B7PIXS |BTPIX4 |B7PIX3 |B7PIX2 |B7PIX1 |BTPIXO0 | 47 BITPLANE
COLOR PALETTES
FG/BG | RED3 | rep2 | RED1 | REDO | 100-1FF RED
GRN3 GRN2 GRN1 GRNO 200-2FF GREEN
BLU3 BLU2 BLU1 BLUO 300-3FF BLUE
COLOR/ATTRIBUTE RAM
UNDER | HILIT | REVRS | BLINK | INDX3 | INDX2 | INDXL INDXO | D80O-DBFF
: — (DCOO~DFFF)
VIDEO BANK SELECT AND ENABLE
(EN BIT MUST BE 1 FOR VB TO BE 0) ,
VBl VB0 | DDOO (WRITE)
EN1 ENO DD02 (WRITE)

System Specification for C65 Fred Bowen. March 1, 1991

Limitations of the C43567R&
and How to Avoid Them

Watch carefully, when particular mode changes take effect. You may
change PAL, H1280, V400, BPM, ATTR, and H640 modes anytime. However, the
new mode selection will not take effect until after the last line of the -

current character row. This is intended to simplify split-screen programming.

But, if you are using the DAT to access bitmaps or bitplanes, you must wait
long enough after selecting a new H640 or V400 mode to guarantee that the

C4567R6 is. in the mode you intended before doing.any DAT accesses. The DAT use

these bits to determine how to draw the image.

If you want to use all four 640x400 bitplanes, you will be limited to
a maximum of S sprites having unique data. You can have more sprites, if they
‘re permitted to share data. This limitation is due to the. fact that 'sprite

sointers and data must be fetched from the 16K video matrix which must also be

shared with one of the bitplanes. The bitplane will use 16000 of the 16384
bytes. This leaves 384 bytes, which would support 6 sprite data blocks of
64 bytes, each. But the sprite pointers must come out of the highest
addressed block, thus leaving only 5 sprite data blocks available.

If you really need 8 unique sprites, you can use four 640x384 pixel
bitplanes. This is done by setting the row select bit to 24 row mode.
This will give you a total of 16 blocks of 64, This is more than enough, so
you can even have alternate sprite data blocks.

Note that Sprites and Sprite coordinates are unaffected by screen
resolution, meaning that in 640x400 screens, for example, the sprites are
still the same size on the screen and are still positioned as if the display
map were 320x200. In an 80-column text, or 640-wide bitplane, screen a “"dot™"
on a sprite will cover 2 pixels. '

Note also that, in bitplane mode, sprites will only collide with
"background® data which has bits "on" in bitplane 2. All other bitplanes
will NOT cause a sprite-to-background-data collision.

- gﬁxﬁg&h LM_O %\WY -N U)\’)S: \bogoo

4

System Specification for CgS : Fred Bowen March 1, 1991

An Example of How to Program the Color Palette
for 1280 Pixel Resolution and Driving FGBG

In 1280 mode you must use 2 bitplanes to time-multiplex into 1. So,
for example, lets use BP0 for "early" bytes and BP1l for "late" bytes.

o +m——— tmm——— tmm——— tm———— + + +=- +

7 1-6-41 5 | 4 | 3 | 2 [1 | 0 | early BPO
tm——— Frm——— Y Fm———— Fm——— tmm—— Fot e ——— +

e tom———— Fomm— fm———— +- + + +

I 7 | 6 | 5 | 4 1y 3 | 2 Il T 1 0 | late BP1
o ——— tomm—— Fmm——— +m——— d———— e Fr——— e +

+_,+__+n_+_a+--+-_+--+__+__+*_+__+__+-_+-_+_-+__+

I?EI7L16EI6LI5EI5LI4EI4LI3EI3L12EI2LllEilLIOEIOLI final output
i e e At e R et e S O S :

The early pixels will be interleaved with the late ones, as shown.

So, if you want to alter 1 pixel, you must decide which bitplane
it will be in, and operate on its byte., -

Make sure the H1280 control bit is set. If it is, BP7 will be forced
low for an early pixel, and high for a late pixel. Let’s program the palette
to muitiplex BPQ early and BP1 late and ignore BP2 and BP3. I want my
background to be black, and image to be white, and, at the same time have

BP3 drive a 640 pixel monochrome screen with the FGBG pin. (it too could
be 1280 pixels). -

System Specification for C65 Fred Bowen . March -1, 1991.. -

Display Address Translator (DAT)

The C4567R6 contains a special piece of hardware, known as the Display
Address Translator, or DAT, which allows the programmer to access .the bitplanes
directly. In the old VIC configuration, the bitmap was organized as 25 rows
of 40 stacks of 8 sequential bytes. This is great for displaying 8 x 8§
characters, but difficult for displaying graphics.

The DAT overcomes the original burden by allowing the programmer to
specify the (X,Y) location of the byte of bitplane memory to be read, modified, -
or written. This is done by writing the (X,Y) coordinates to the BPX and BPY
register, respectively. The user can then read, modify, or write the specified
location by reading, modifying, or writing one of the eight Bitplane registers.
There is one bitplane register for each bitplane.

The DAT automatically determines whether to use 320 or 640 pixel mode,
d whether to use 200 or 400 line mode. It will also use the areas specified
Jr the bitplanes, using the Bitplane Address registers.

Horizontal and Vertical Positioning

The C4567R6 has two registers to allow the programmer to alter the
1sitioning of the display relative t¢ the borders of his CRT (television or
menitor) . Initially the positioning registers are set to zero, te give C64
standard positioning. These registers are signed, two’s complement values
which specify an offset from the default positions.

Chroma Killer

The C4567R6 provides analog RGB video, with sync on all colors, an
analog luminance output, with sync, and an analog NTSC (or PAL on PAL versxons)
chrominance output. It also provxdes a separate digital video signal, and a
separate dxgltal sync. When using the C4567R6 with a black and white television
receiver, it may be best to suppress the chrominance information. This can be
done by setting the MONO bit in control register "B".

“1ditional ROM . -

The C4567R6 does all decoding for ROMs. It supports a total of 32K of
ROM, which is 12K over what the C64 is configured for. This 12K of extra ROM
is available in one BK block at 8000 (hex), and one 4K block at C000 (hex).
To enable ROM at these areas, set the ROMEBS000 or ROMEBCO00 bits in Control
Register "A". (Note that there are other chips in the C65 whicl extend this
ldressing limitation. The C65 has a 1MB ROM built-in.)

Alternate Character Set

Ordinarily, the C4567R6 will always fetch ROM-based character data from
addresses DOOO-DFFF. If the CROME9000 bit is set in control register "A",
ROM-based character data will be fetched from addresses 9000~9FFF. This
allows for an alternate ROM-based character set.

System Specification for C65 : Fred Bowen. March 1, 1991

Future Document Topics

At a later time, this document may also describe the following C4567R6
enhancements and features.

Weatherfax Mode

Multiple (2-8) playfields

Playfield prioritization.

Multiple CRT configurations using the digital and analog video
Multiple sub-palettes

Mixing 1280 pixel and 640 pixel bitplanes

Using all 272 palette locations

Transparency, highlighting, and palette logic functions

Use of the priority/collision bltplane with the sprites
- Use of external Video RAM

System Specification for C65 Fred Bowen .

palette palette
addresses outputs

F
EBBBBEER . ' G
PPPEPPPP RRRR GGGG BBEB. B
76543210 3210- 3210 3210 G
Q0000000 - 0000 0000 0000 0
00000001 1111 1111 1111 0
gococoto 0000 0000 0000 0
00000011 1111 1111 1111 0
00000100 0000, 0000 0000 1
00000101 1111 1111 1111 1
00000110 0000 . 0Q00 Q000 1
00000111 1111 1111 1111 1
00001000 0Cc00 (110414 0000 0
00001001 1111 1111 1111 0
00001010 0000 0000 0000 0
00001011 1111 1111 1111 0
00001100 0000 0000 0000 1
00001101 1111 1113 1111 1
00001110 0060 0000 ¢0co 1
00001111 1111 1112 1111 1
10000000 0000 0000 0000 0
10000001 0000 0000 0000 0
1900001¢ 1111 1111 1111 0
10000011 1111 1111 1111 0
10000100 0000 0000 0000 1
19000101 0000 0000 0000 "1
10606110 1111 1111 1111 1
10000111 1111 1111 1111 1
10001000 0000 0000 0000 0
1¢001001 0000. 0000 0000 0
10001010 1111 1111 1111 0
10001011 1111 1111 1111 0
10001100 0000 0000 0000 1
10001101 0000 0000 0000 1
10001110 1111 1111 1111 1
10001111 1111 - 1111 1111 1

< . Marech 1, 1991.

Since BP7 is low, _
the early pixel matters.
Only care about BP0 data,
since it supplies the
early data. Notice how _
the RGB output is all 1‘’s
only when BP0 is a 1,
regardless of what the
other BP’s are doing.
This is how you program
the palette to ignore
certain bitplanes.

' Did you see how FGBG is
.a 1l only when BP3 is a 1

regardless of other BPs?.

Now BP7 is high. The late
pixels are being ocutput.
Now, the RGB output is all
1’s only when BPl (the
late BP) is a 1, regardless
of what the other BPs are
doing. This is how to time
multiplex between planes.

Notice, now, that FGBG is
still a 1 only if BP3 is
a 1, regardless of the
other BPs, like before.
This makes FGBG immune to
the mutiplexing. It also
shows how you can mix
modes on the same screen!

Note that BP4, BP5, and BP6 will be zero unless I specifically ask them
to be set to 1 in the Bitplane Complement register. So if they are zero,
I do not need to program the rest of the palette, But I can program the
other parts of the palette, and use the bitplane complements for BP4, BPS,

and BP6 to switch between sub-palettes!

System Specification for Cé5 Fred Bowen

VIC-1I modes, enhanced VIC-II modes, and VIC-III modes.

March 1, 1991

The VIC~III supports, what are called, "VIC-II" video modes. It also

supports enhancements to the basic VIC-II modes. There are,

also a variety

of all-new VIC-III modes. In order to utilize any enhanced VIC-II mode, or

- any VIC-III mode, a special keying sequence is required,

VIC-II modes

Standard Character Mode
Multi-Color Character Mode
Extended Color Mode

Bit Map Mode

Sprites

Enhancementé available to VIC-II modes

80 column character modes (vs standard 40 columns)
640 x 200 pixel bit maps (vs standard 320 x 200)

Programmable colors

Character attributes -~ Underline, Blink, Reverse, Hilight

Alternate character set
Interlace

VIC-III video modes
Bitplane modes

1280 pixel ultra-high resolution
400 line operation

System Specification for (65 Fred Bowen . March 1, 1991

Location of VIC-II video data in memory (Video Bank selection)

The VIC-II modes can only access a maximum of 16K bytes of memory,
out of a total of 64K of potentially available display memory. To select
which fourth of the 64K memory will be available for VIC-II video accesses,
the user must specify which Video Bank to use. This is done by setting
bits 0 and 1 in the Bank Select register (location DD02 hex) as shown.

Bit Video Address

1 0 Bank Range

00 3 . COO0-FFFEF
01 2 8000~-BFFF
10 1 4000~7FFF
11 0 0-3FFF

¢ same two bits must be set to a 1 in an enable register (location DDOO
~ 2x) in order for a 0 data bit to be recognized. Both of these registers,

though write only, may have bits shared, elsewhere in the application
system, If this is the case, care must be taken to preserve the other
port bits not shown, here,

The Video Matrix

The Video Matrix is a block of memory used to store character-organized
display data. Depending on whether the chip is in 40 column or 80 column
display mode, it is 1024 or 2048 bytes long. Since the VIC-II modes can conly
access 16K bytes of memory, this means there are 16 or 8 places that the video
matrix can appear within the 16K Video Bank, depending on whether 40 or 80

column mode is selected. The location of the Video matrix is chosen by bits
4 through 7 of the Memory Pointers register (address D018 hex). Bit 4 has no
effect in 80 column mode.

System Specification for C&5 Fred Bowen March 1, 1991

The Character Memory Block

The Character Memory is a 2048 byte block of memory that contains
character image data. Fach character definition requires 8 bytes in order
to display a 8 x 8 bit character image. And thliere are 256 possible values
for each character code, so 8 x 256, or 2048 locations are required. For
each character definition stored in the character memory, the lowest of the
eight memory addresses used by the character represents the top one of
eight scan lines of the character. The leftmost pixel of each character is
the most significant bit (bit 7) of the respective character memory byte,

Since the VIC-II modes can only access 16K bytes of memory, there are
only eight choices where the Character Memory Block can be located. That
location is selected by bits 1-3 of the Memory Pointers register (address
D0Ol8 hex). Special combinations of Character Memory Block and Video Bank
selections determine whether the character image data is fetched from RAM or
from ROM,.as shown below. . : :

&8
o
vt
T
5
=3
sl
t
5
[
a
o
o
i
"

source address
RAM {0-7EF)}+VB
RAM {B00-FFF) +VB)
ROM DOCO0-D7FF (COQO-C7EF if CROMBCO000)
RAM {(1000-17FF) +VB
ROM DO0O-D7FF (COQQ-C7FF if CROMACO00)
RAM (18C0-1FFF) +VB
RAM (2000-27FF) +VB
RAM {(2800-2FFF) +VB
RAM (3000-37FF)+VB
RAM (3800-3FFF) +VB

HEHMHOODCOOO | W
HHEHOORPRMHOO | N
HOMOKRMEOOMO | p4p.
I O S
KRR RPOHOXY 1O

Coloxr/Attribute Memory

The VIC-II modes have a 1024 or 2048 byte color and attribute memory,
depending on whether 40 columns or 80 columns are selected. This memory is
used to determine what color and what attributes are to be applied to each
character in the video matrix. Color/Attribute RAM is immovable. Physically,
it is located at RAM locations 1F800-1FFFF. The CPU, however can access the
1024 byte portion at addresses D800-DBFF. It can access the entire 2048
byte block from D800G~DFFF if the COLE@DCO0 bit is set in control register A.

The CPU can also access Color/Attribute RAM directly at addresses 1F800-
1FFEF. :
. .

Standard Character Mode

Standard Character Mode is selected by writing 0 to the ECM and BMM
bits in Mode Register A (location DO11l hex), writing 0 to the MCM bit in

Mode Register B (location D016 hex), and by writing 0 to Control Register B
(location D031 hex).

System Specification for C65 " Fred Bowen . : March 1, 1991

2.5 C€CSG F01lx —-- C65 Disk Controller Chip gate array (preliminary)
2.5.1 Description

CSG4171-F011 Revision C ' s

The CSG4171-FO011 is a low cost MFM disk interface. It requires the use
of an external 512 byte RAM as a data cache buffer. This interface can perform
reads from and writes to MFM formatted diskettes, as well as free-format full
track reads and writes. It can also format diskettes. Logic is also provided
for timed head stepping and for motar spin-up. The F0l1 provides for :
expansion drive interconnect using a serial protocol for control and status

signals. It also incorporates an index pulse simulator for drives that do not .
have an index sensor.

Unlike its predecessors, the "C" revision provides

. Active high local LED output.

Correct remote DSKCHG status. ‘

Protection of control bits when changing drive selects.

IRQ cleared on reset. ‘

Blinking of the local LED.

Swapping of buffer halves for CPU access.

Two new Digital Phase Locked Loop (DPLL) read recovery methods
in addition to the original Full Correction (FC) algorithm.
Improved capture range in Full Correction.

Decoding for external disk registers. :

A one line to two line active low decoder for external hardware.

WD OmoAanbp

System Specification for C65 Fred Bowen March 1, 1991
Read recovery options

The FO0ll now provides 3 methods for recovering MFM formatted disk
data. Each method has its own advantages and tradeoffs. This is how.they
work... '

The read-recovery, or dibit counter divides the dibit period into
sixteen partitions or counts assuming no read data pulses occur or
correctly positioned read pulses occur. When a read data pulse with
less~than-ideal positioning occurs, the dibit counter will modify its count
depending on whether Full Correction (FC}, Digital Phase Locked Loop (DPLL)
or Alternate Phase Locked Loop (ALT) recovery methods are selected.

}— DIBIT CELL —]

0f1]|213]4|5]|6|7|8|9|a|B|ciD|E|F DIBIT COUNTER

READ DATA PULSE

gslolal|e|cip|ElF NEW (FC) DIBIT COUNTER

NEW DIBIT CELL ——

In Full Correction (FC) the dibit counter 'is forced to count eight
after a read pulse is received. This is the equivalent of forcing the read
pulse to the center of the bit cell. This method fully compensates for
phase and frequency variation. It will tolerate a considerable range of
bit frequency error at the cost of permitting a limited range of bit phase
error.

System Specification for €65 - Fred Bowen _ ‘March 1, 1991 .

READ DATA PULSE -

— DIBIT CELL ——]

olri213|a|sl6|7|8]oiaiB|c|p|E|F| | | |DPLL RESULT

b— 20D 1 — }—— SUB 1 ——

In Digital Phase Locked Loop (DPLL) recovery, the dibit counter is
incremented if a read pulse occurs early (before a dibit cell center},
decremented if a read pulse is late (after a dibit cell center), or counts
normally if no read pulse occurs, or if a pulse occurs within a dibit cell
center. This method has the ability to track a large range of bit phase

ror, but, unfortunately can only handle a very narrow frequency erxor
age.

- READ DATA PULSE

— DIBIT CELL —]

0i1121314]15le6i7|8|9|Aa[BiC|D|E|F ALT DPLL RESULT

b +2 ——1 o b -1 — -2 —

In Alternate Digital Phase Locked Loop (ALT) recovery, the dibit
counter behaves exactly as it does in standard DPLL mode, except that if a
read pulse occurs more than 3 counts early, or 4 counts late,the counter
is incremented or decremented by 2. Like DPLL, this method can tolerate
a large range of bit phase error, but can also compensate for a larger

“wequency error range. -
g

;

System Specification for C65 - Fred Bowen ‘March 1, 1991 -

READ DATA PULSE

— DIBIT CELL —_

o{1l2|3|4|s|ej7i8|9|alB|cip|E|F] | | |DPLL RESULT

p~—— ADD 1 —— }—— SUB 1 —r

In Digital Phase Locked Loop (DPLL) recovery, the dibit counter is
incremented if a read pulse occurs early (before a dibit cell center),
decremented if a read pulse is late (after a dibit cell center), or counts
normally if ne read pulse occurs, or if a pulse occurs within a dibit cell
center. This method has the ability to track a large range of bit phase

ror, but, unfortunately can only handle a very narrow frequency error

ange.

. READ DATA PULSE

— DIBIT CELL —_

011(2131415|6[7]8{9]|a|B|C|D|E|F AT DPLL RESULT

F+2—+1 o 1 — -2

In Afternate Digital Phase Locked Loop (ALT) recovery, the dibit
counter behaves exactly as it does in standard DPLL mode, except that if a
read pulse occurs more than 3 counts early, or 4 counts late,the counter
is incremented or decremented by 2. Like DPLL, this method can tolerate
a large range of bit phase error, but can also compensate for a larger
“vequency error range. - :

System Specification for C65 i Fred Bowen March 1, 199i-

46 SERIO low I/0 exp serial control/status

47 LD low output exp - direction of serio

48 CLK low output exp shift clock 7

49 Locax, low input disk local drive available

50 TSTCLK input test test clock |

51 EXTREG low output to external registers

52 Ad input cpu - address

53 DRO low output disk drive select 0 :

54 CcSt low input . cpu chip select external logic

S5 LED high output disk panel LED -

S6 DIR output disk stepping direction

37 STEP low . output disk - stepping command

58 PHO input cpu clock

59 DSKIN ilow input disk disk inserted

60 RES low input cpu reset

61 XTALl input crystal

62 XTALZ2 output crystal

63 VENDOR low input vendor

64 vCcC .

65 CSLO low output to external logic

2? CSHI low output to external logic
GND . :

68 GND

System Specification for C65 - Fred Bowen ' March 1, 1991

2.5.2.2 Signal Descriptions

A0-a4

R®

bQ@-D7

CS

Csl

PHO

IRQ

RAD-RAS8

RDO-RD7

RCS

Processor Interface Lines

These five address inputs select which internal or external
register is to be read or written by the processor.

The RW input determines whether a register will be written
(RW=low) or read (RW=high) by the processor.

Eight bi-directional lines which transfer data to and from the

processor during register reads and writes. These are normally
inputs, but become driven outputs when CS and PHO are true.

The Chip Select is a low-true input that determines that a
register read or write will occur when PRO becomes true.

- External hardware chip select input. This low-true signal, when

asserted, will cause CSLO to go true (low) if A4 is low,
or CSHI to go true (low) if A4 is high.

A high-true input that must be driven high by the processor
to indicate that AO0-A4, RW, and CS are valid.

The Interrupt Request is an open-drain output that will sink
current when an interrupt is requested by the FO01l. IRQ will

go low (true) when the BUSY status bit changes from true to
false if IRQ is enabled,

The Reset is a low-true input used to reset internal events.
When RES goes low (true) any command in progress will be

terminated. RES will not, however, affect any control register
bits. : '

Buffer RAM Interface Lines

These nine RAM Address outputs must be connected directly
to nine of the external buffer RAM chip address inputs.
These may be scrambled for PCB simplification.

These eight bi-directional lines must be connected to the eight
bi-directional data lines of the external buffer RAM. These may
be scrambled for PCB simplification. RDO-RD7 are inputs except
when RRW and RCS are low. Then they become driven outputs,

The RAM Read/Write output must be connected to the R/W input
of the external buffer RAM to control reading and writing.

The RAM Chip Select is a 1.0 Mhz clock of 50% duty cycle, and
is low at a time when RAO-RA8, RRW, and RCS are valid. It must
be connected to the CS input ¢f the external buffer RAM.

e,

System Specification for C65 Fred Bowen . : March 1, 1991 -

WD
WGATE
WPROT

JOCAL

DRO
DISKIN
MOT
LED

SIDE

" 3TEP

DIR

TKO

INDEX

Disk Drive Interface Lines
(All disk signals are low-true)

The Read Data input expects a series of low-going‘puises.
from the currently selected disk drive. :

The Write Data output provides a series of low-going pulses
at all times to all drives. It represents the MFM encoded
data stream used for disk writes. :

The Write Gate output, when true, causes the Write Data to’
be written to the diskette in the currently selected drive.

The Write Protect input must indicate, when true, that the
present diskette in the local drive must not be written to.
The FO1ll will not assert WGATE if WPROT is true, and will
not execute any write related commands. '

The Local Drive Available input must be grouded in systems
that have a resident local drive 0, and must be tied to Vece
in systems that are diskless. This will permit drive 0 to
be configured externally.

This output, when low, indicates that the local drive
(Drive 0} is the currently selected drive.

The bisk In Input must indicate when a diskette is physically
in the leocal drive, and the drive is available for use. '

The Motor On output, when true, turns on the motor of the
local disk drive only. (Also turns on local LED).

The EEB’Eazgut, when true turns on the panel Light-emitting-
diode of the local disk drive only. (Causes LED to BLINK) ,

The Side select output determines which side of the media
is to be read or written. It is high (false) for side 0, and
low (true) for side 1. This output reflects .the status of the
SIDE control bit regardless of which drive is selected. -

The Step output provides a low-going pulse when a head stepping
command is executed, regardless of which drive is selected.

The Direction output indicates to the drives whether the
read/write head is to step toward track ¢ (DIR=high} or away
from track 0 (DIR=low) when a step pulse is recdived. This
output reflects the status of the DIR command register bit -
regardless of which drive is selected.

The Track Zero input must determine when the read/write head
of ‘the local drive is positioned over track zero. This input
will not suppress stepping pulses.

The Index pulse input must provide a low going pulse for each
spindle rotation of the local drive, if the local drive has
an index sensor. This input must be tied low if the local
drive has no index sensor.

¢ s

System Specification for C§S Fred Bowen : - March 1, 1991

SERIO

CLK

XTALL
XTAL2

VENDOR

TSTCLK

C3LO

CSHI

EXTREG

Expansion Drive Interface Lines
(all expansion lines are low-true)

The Serial I/O line is a bi-directional signal that is used
to pass control to all external disk drives, and to receive
status information from them. It is a driven. output when LD
is high, and an input, otherwise.

The Load Data output tells the external expansion drives
when to update control information shifted off of the serio
line, when to load status information for shifting, and when
to drive the SERIO line. (This is discussed later.)

The Clock output provides a 50% duty cycle clock at 250Khz
to be used by the external expansion drives for shifting
control and status information in and out.

Other Signals

These two lines form two poles of a series-resonant crystal
oscillator circuit. XTALL is an input, and XTAL2 is an output.
An 8.0000Mhz crystal should be used.

The software Vendor identifier input determines whether the
F011l will be capable of generating protect marks within

the sector headers. Production units will not have this
signal bonded, except those shipped to software vendars. This
pin should be grounded at all times.

The Test Clock input is used to reduce F0l1l test times. This
pin should be grounded at all times.

External haxdware active-low chip select output. Goes low when
CS1 and A4 are both low,.

External hardware active-low chip select output. Goes low when
CSl is low and A4 is high.

External register active~low chip select ocutput. Goes low when
CS is low and A4 is high.

Ny

System Specification for C6&5 Fred RBowen March 1,
2.5.3 Registers |
C4171-FO11C Registers
7 6 . 5 4 3 2 1 0
CONTROL | IRQ LED | MOTOR | SWAP | SIDE | DS2 DS1 DSO
COMMAND | WRITE | READ | FREE - | STEP DIR | ALGO | ALT | NOBUF
STAT A BUSY. DRQ EQ RNF CRC LOST | PROT TKO
STAT B | RDREQ | WFREQ | RUN | WGATE | DSKIN | INDEX | IRQ | DSKCHG
TRACK T7 T6 T5 T4 T3 T2 T1 TO
SECTOR 87 s6 85 . 54 s3 | s2 s1 50
SIDE s7 s6 55 s4 - s3 s2 s1 S0
DATA D7 D6 | DS D4 D3 p2 | n1 DO
CLOCK c7 cé 5 c4 c3 Cc2 c1 co
STEP 87 $6 S5 s4 | s3 '§2 s1 50
P CODE P7 - P6 | P5 . P4 P3 12 Pl PO

1991

System Specification for C65 Fred Béwen March 1, 1991

Control Register

Data from the control register is sent to both the local drive
(DRO) and all of the serially connected expansion drives {DR1-DR7). The

MOTOR and LED signals will be held for the local drive while other drives
are selected. :

IRQ When set, enables interrupts to occur. when reset clears
and disables interrupts. _ .
LED These two bits control the state of the MOTOR and LED

MOTOR outputs., When both are clear, both MOTOR and LED. outputs will
be off. When MOTOR is set, both MOTOR and LED outputs will
be on. When LED is set, the LED will "blink™,

SWAP Swaps upper and lower halves of the data buffer
as seen by the CPU. '

SIDE when set, sets the SIDE ocutput to 0, otherwise 1,

DSZ2-DSO these three bits select a drive (drive 0 thru drive .

When DS0-DS2 are low and the LOCAL input is true (low) the
DRO output will go true {(low}. '

Command Register

WRITE must be set to perform write operations.

READ must be set for all read operations,

FREE allows free-format read or write vs formatted -
STEP write to 1 to cause a head stepping pulse.

DIR sets head stepping direction

ALGO selects read and write algorithm. 0=FC read, 1=DPLL read,
O=normal write, l=precompensated write. :

ALT selects alternate DPLL read recovery method. The ALGO bit
must be set for ALT t& work. '

NOBUF clears the buffer read/write pointers

System Specification for €65 : Fred Bowen March 1, 1991
Status Registers
The appropriate status bits are sampled from the local status inputs

if the local drive (DRO) is selected. Otherwise, those bits are sampled from
the serially connected expansion drive {DR1-DR7} . g

BUSY command is being executed

DRQ disk interface has transferred a byte

EQ buffer CPU/Disk pointers are equal

RNF sector not found during formatted write or read
.CRC CRC check failed

LosT data was lost during transfer

PROT disk is write protected

TKO head is positioned over track zero

RDREQ sector found during formatted read
WIREQ sector found during formatted write
RUN indicates successive matches during find operation
WGATE write gate is on '
DSKIN indicates that a disk is inserted in the drive
INDEX disk index is currently over sensor
IRQ an interrupt has occurred ‘
DSKCHG the DSKIN line has changed
this is cleared by deselecting drive

Track Register
Sector Register
Side Register

The Track, Side and Sector registers are used in FIND operations to
locate a given sector on a given track on a given side.

Data Regigter

The data register is the CPU gateway to the data buffer for. both read
and write operations. . :

lock Register

e

‘\ The clock register is used to‘define the clock pattern to be used to

write address and data marks. This register should normally be written to
FF (hex).)

)

System Specification for C65 Fred Bowen March 1, 1991
Step Register A

The step register is used to time head stepping. This register is
compared to a counter, which is clocked at 16Khz, giving a time of 62.5
microseconds per count, allowing a maximum of 16 milliseconds of step
time per step operation. :

Protect Code Register

The Protection Code register is a read-only register that contains
the protect code of the last sector read. If the last sector read does not
contain a Protect Mark in its header, then this register.will contain zero.

Legal commands are...

hexcode notes macro function

-

RDS Read Sector

490 1,4,5

80 1,2 WTS Write Sector

60 1,4,5 RDT Read Track

AQ 1,2 WIT =~ Write Track (format)

10 3 STOUT Bead Step Out . .

14 3 TIME Time 1 head step interval (no pulse)
18 3 STIN Head Step In : '

20 3 SPIN Wait for motor spin-up

00 3 CAN Cancel any command in progress.

01 CLB Clear the buffer pointers

1. Add 1 for nonbuffered operation.

2. Add 4 for write precompensation

3. Add 1 to clear buffer pointers

4. Add 4 for DPLL recovery instead of FC recovery.
3. Add 6 for Alternate DPLL recovery. '

System Specification for C65 Fred Bowen . March 1, 1991

2.5.4 Command Descriptions

Execution of any legal command will cause the BUSY status to be set,
and the IRQ, RNF, CRC, and LOST flags to be cleared. Execution of‘the CANcel
or CLearBuffer commands, or any write operation command with the WPROT status
set, or any illegal command, will not cause a2 normal BUSY condition. However,
any write to either the Command Register or the Control register will ’
automatically cause BUSY to be set for at least one round trip delay of
transmission and reception of the serialized control and status signals. When
BUSY gets reset, either by successful command completion, error termination, .
round trip completion, or by user cancellation, the IRQ flag will be set,
and an interrupt generated, unless interrupts are disabled.

The user may CANcel any operation in progress at any time using the
CAN command to can it. Use of this command during write operations is not
~dvised. - - Co

Unbuffered operations

If the buffer pointers are held clear by setting bit 0 in the command
register while issuing a command, unbuffered operations will result. These
are most useful for formatting a diskette. The DRQ flag in status register
A indicates when a transfer has occurred to or from the disk.

. For read operations, DRQ set, indicates that a byte of data has been
read from disk, and must be read by the CPU. Reading the data with the

CPU will clear the DRQ flag. If the data is not read by the time another
byte is read from the disk, the old data will be overwritten and the LOST

status flag will be set. The LOST flag will remain set until the next
command is written.

For write operations, the user should supply the first byte of data
either before, or shortly after issuing a write command. The DRQ flag set
indicates that the byte has been written to disk, and the CPU must supply
the next byte. When the CPU supplies a-byte the DRQ flag will be cleared.
If the CPU does not supply a new byte in the time that it is required by
the disk interface, the previous byte data will be written, and the LOST

‘lag will be set. The LOST flag will remain set until the next command is
written. '

Buffered operations

Buffered operations can be monitored by reading status register A.
The DRQ and EQ bits indicate the immediate status of the buffer pointers.
During any operation, the EQ bit, when set, indicates that both the disk
and CPU buffer pointers are pointing to the same location. This can mean
that the buffer is full or empty, depending on what operation is, or will
be performed. The DRQ bit set indicates that the disk was last to access
the buffer, and clear indicates that CPU was last to access the buffer.

For read operations, the disk interface will read bytes from disk
into the buffer. This will set DRQ and clear EQ. The CPU may read data
from the buffer at any time after this occurs, and can continue to read
data until EQ goes high, indicating that the buffer is empty. CPU reads
from the data buffer will clear DRQ. If data is read from disk, setting
DRQ, and EQ also gets set, this indicates that the buffer is now full.
One more byte read from disk will set the LOST flag. The LOST flag will
remain set until the next command is written. This condition will not
usually occur when performing sectored reads of 512 bytes or less, since
that is the buffer size.

For write operations, CPU data may be written to the buffer before
executing a write command, but may also be supplied during the transfer.
If the EQ flag is set after the CPU writes to the buffer, clearing DRQ,
this indicates that the buffer is now full, and that the CPU should wait
before stuffing more data. The the EQ flag goes high with DRQ high, this
indicates that the disk interface has used all of the available data in
the buffer. If one more byte is written to the disk, the LOST flag will
be set, indicating old buffer data has been written to disk. The LOST
flag will remain set until the next command is written, '

Data Transfer Commands

Execution of any of the Data Transfer Commands must be performed
assuming that the correct drive has been selected, the proper side has
been selected, and the drive’s motor is on and has had time to spin up.
The read/write head(s) must be positioned over the track that data is to
be transferred to or from. If the status of the buffer pointers is not as

expected or required, a buffer pointer clear should be performed before
writing data or issuing commands. : :

All write commands should be performed with all bits in the clock
register set to a "1" (FF hex). This register is used only for formatting
diskettes. For all write operations, the WGATE status flag indicates when
data is actually being written to the diskette. .

Sectored or formatted operations

These operations differ from free-format commands in that the use
of sectors is expected. Sectors are of fixed length, and are located and
read or written automatically. The disk control logic will verify that
the track/sector/side read from the address marks on the disk match the .
track/sector/side register contents before transferring any data. If the
address marks do not match the addres. information supplied by the user
within 6 index pulses, the command will terminate, -BUSY will be reset,
and the RNF {record not found) flag will be set. The RNF flag will
remain set until the next command is issued. The RUN flag, when set,
indicates that so far, the sector being accessed appears to be correct.
This flag will reset when any part of the address mark does not match
the expected data, or a successful completion occurs. Therefore, RUN
can change states several times over a single track.

RDS Reéd a Sector

Writing a 40 (hex) to the command register will cause the controller
to execute a buffered RDS (read sector) command. Writing a 41 (kex) will
execute an unbuffered RDS command. Add 4 to either command te select DPLL
data recovery instead of the normal FC method. Add & to either command to
select Alternate DPLL recovery instead of the FC method. :

The RDREQ flag, when set, indicates that the requested sector has been
found, and is now being read into the buffer. RDREQ will reset after the last
byte of the sector is read.

WTS Write a Sector

Writing a 80 (hex) to the command register will execute a buffered WTS
(write a sector) command. Add 1 to this command for unbuffered operation,
and add 4 if write precompensation is desired.

The WTREQ flag, when set, indicates that the requested sector has been
found, and is now being written from the buffer. WTREQ will reset after the
last byte of the sector is written. -

RDT Read a track

Writing a 60 (hex) to the command register will initiate an unformatted
buffered disk read. Add 1 to the command for unbuffered operation. Reading
will begin immediately, and will continue until user cancellation’. The data
recovery logic will use address and data marks to align data. to byte)
boundaries. Add 4 to either command to select DPLL data recovery instead of
the normal FC method. Add 6 to either command to select Alternate DPLL ‘
recovery instead of the FC method. :

WTT Write a track

Writing an A0 (hex) to'thercommand register will initiate a buffered
write track operation. Add 1 to this command for unbuffered operation, and
add 4 to enable write precompensation.

The Write Track feature is usually oﬁly used for formatting diskettes,

and will most likely be used in the unbuffered mode, since both data and

clock must be supplied on a byte by byte basis. Write normal data with the
clock register set to FF hex. Write special marks with missing clocks by
writing an FB hex to the clock register.

Writing actually begins with the first index pulse after the command
is issued, and continues until the next index Pulse. '

STIN, STOUT Step In and Step Out

Writing a 10 (hex) or 18 {hex) to the command register will initiate
2 Step-In or Step-Out operation, respectively. The stepping pulse will be
generated immediately, and BUSY will remain set for the duration of the
stepping time specified in the STEP register :

e

TIME General purpose timer
Writing a 14 ‘(hex) to the command register will initiate a TIME

operation. BUSY will remain set for the duration of the time specified
n the STEP register. No stepping Pulse will be generated.

SPIN Wait for motor spin-up

Writing a 20 (hex) to the command register will cause BUSY to be set,
and stay set for six index pulses. The RNF flag will be set at the end of

.this operation.

CAN Cancel or "Can" the current operation

Writing a 0 to the command register will force cancellation of any
command in progress, and force BUSY to be reset after at least one round-trip
serial control and status transmission and reception.

CLB Clear buffer pointers

Writing a 1 to the command register will unconditionally reset the
buffer pointers. This should be considered a buffer clear operation, although
the contents of the buffer are not affected. The BUSY flag will be set for
at least one round-trip serial control and status transmission and reception.

System Specification for C6S Fred Bowen March 1, 1991

Full Track Writing and Formatting Diskettes

Writing full-track data and formatting are very similar. Both will
require that you generate the appropriate SYNC bytes, so that the' read
data recovery logic can align the serial bitstream to byte boundaries.
Both descriptions, below, will assume that the spindle motor is on, and up
to speed, and that the read/write head is positioned over the. track and
side to be written. ' .

Track Rrites

Full-track writes can be done, either buffered or unbuffered, -
however, the CLOCK pattern register has no buffer, and writes to this register
must be done "one on one". '

Write track Buffered

issue "clear buffer™ command

write FF hex to clock register

issue "write track buffered" command

write FF hex to data register

wait for first DRQ flag

write Al hex to data register

write FB hex to clock register

wait for next DRQ flag

write Al hex to data register

wait for next DRQ flag

write Al hex to data register

wait for next DRQ flag

write FF hex to clock register

write your first data byte to the data register
you may now use fully buffered operation.

Write Track Unbuffered

write FF hex to clock register
issue "write track unbuffered™ command
write FF hex to data register
wait for first DRQ flag
write Al hex to data register
write FB hex to clock register
wait for next DRQ flag '
write Al hex to data register
wait for next DRQ flag .
write Al hex to data register ' t
wait for next DRQ flag
write FF hex to clock register
loop: write data byte to the data register
check BUSY flag for completion
wait for next DRQ flag
go to loop

Fred Bowen

System Specification for Cé5 March 1%, 1991.

Formatting a track

In order to be able to read or write sectored data oa a diskette,.
the diskette MUST be properly formatted. If, for any reason, marks are
missing or have improper clocks, track, sector, side, or length information
are incorrect, or the CRC bytes are in error, any attempt to perform a
Sectored read or write operation will terminate with a RNF error.

Formatting a track is simply writing a track with a strictly specified
series of bytes. A given track must be divided into an integer number of
sectors, which are 128, 256, 512, or 1024 bytes long. Each sector must
consist of the following information. All clocks. are FF-hex, where not
specified. Data and clock values are in hexadecimal notation. Fill any
left-over bytes in the track with 4E data.

quan data/clock description
12 00 gap 3*
3 Al/FB Marks
FE Header mark
{(track) Track number
(side) Side number
{sector) Sector number
(length) sector Length (0=128,1=256¢,2=512,3=1024)
2 (cre) CRC bytes
23 4E gap 2
12 00 gap 2
3 Al/FB Marks
FB Data mark
128,
256,
512, or)
1024 09 Data bytes (consistent with length)
2 {cre) CRC bytes
24 4E gap 3*

* you may reduce the size of gap 3 to in
the sizes shown are suggested. '

crease diskette capacity, however

System Specification for C§S5 Fred Bowen March 1, 1991

Generating the CRC

The CRC is a sixteen bit value that must be generated serially, one
bit at a time. Think of it as a 16 bit shift register that is broken in
two places. To CRC a byte of data, you must do the following eight times,
(once for each bit) beginning with the MSB or bit 7 of the input byte.

1. Take the exclusive OR of the MSB of the input byte and CRC
bit 15. Call this INBIT. '

2. Shift the entire 16 bit CRC left (toward MSB) 1 bit position,
shifting a 0 into CRC bit 0. :

3. If INBIT is a 1, toggle CRC bits 0, 5, and 12.

To Generate a CRC value for a header, or for a data field, you must
first initialize the CRC to all 1’s (FFFF hex). Be sure to CRC all bytes of
the header or data field, beginning with the first of the three Al marks, and
ending with the before the two CRC bytes. Then output the most significant
CRC byte (bits 8-15) and then the least significant CRC byte (bits 7-0). You
may also CRC the two CRC bytes. If you do, the final CRC value should be 0.

Shown below is an example of code required to CRC bytes of data.

.~ Wy %y

éRC a byte. Assuming byte to CRC in accumulator and cumulative
CRC value in CRC (lsb) and CRC+1 (msb) . :

CRCBYTE LDX #8 ; CRC eight bits
STA TEMP N
CRCLOCP ASL TEMP ; shift bit into carry
JSR CRCBIT ;: CRC it '
DEX .
BNE CRCLOQP
RTS

LTS TR T

CRC a bit. Assuming bit to CRC in carry, and cumulative CRC
‘ value in CRC (lsb) and CRC+1 {msb) .,

CRCBIT ROR
EQOR CRC+1 ; MSB contains INBIT
PHP : '
ASL CRC
ROL CRC+l1 ;> shift CRC word
PLP
BPL RTS :)
LDA CRC : toggle bits -0, 5, and 12 if INBIT is 1.
EOR #$21 . '
STA CRC
LDA CRC+1
EOR #3510
STA CRC+1
RTS RTS

~

System Specification for C65 . Fred Bowen March 1, 1991 .
2.5.5 FO0ll Disk Expansion Port ‘Serial Protocol
J - an

LED {MOT|STP!{DIR|SID|DS2|DS1|DS0}SPR{DKI|DKC IND{PRT[TKO{ SERIO

Legend:

Qutputs.., ‘Inputs...

LED Panel LED On TKO Track Zero
MOT Spindle Motor Cn DKI Disk Inserted
STP Step Pulse DKC Disk Changed
DIR Step Direction IND Index

SIiD Side Select PRT Write Protect
DS2-DS0 Drive Unit Select SPR Spare input

The SERIO pin is bi-directional, and is used for both transmission of
drive control signals, and reception of drive status signals. The F01l
will drive SERIQ when LD is high. The selected remote unit must drive SERIO
when LD is low. All SERIO bits.are low-true. SERIO will float high for non-
existant drives, making all inputs look false. o

All remote units must clock in serial data on the falling edge of CIK.
The remote units must update their control information on LD falling if the
DS bits match the given unit. All remote units may load their status inputs
when LD is high. Remote units shift out serial status on the rising edge of

CLK. The F0ll will not change LD coincident with CLK, nor will it drive
SERIC when LD is changing.

System Specification for C&5 Fred Bowen

2.5.6 FO01l1 Disk Timing

UNBUFFERED WRITE

| |

CTAK

DRQ

DTAK

UNBUFFERED READ

LOST

'DTAK

" DRQ

CTAK

LOST

March 1,

1991 -

System Specificatj.on for C65 Fred Bowen A March 1, 1991.

BUFFERED READ

1 000 1] om

DRQ

I_ | | l_ CTAK

LOST

BUFFERED WRITE

T 0 L e

DRQ

r .' r 1 FL_ .DTAK

LOST

System Specification for o 1] Fred Bowen : March 1, 1991

2.6 F016 Expansion Drive Controller

2.6.1 Déscrigtidn

‘ The CSG4101-F016 is a disk expansion interface that is compatible with
. the CSG4181-F011B disk controller. With the use of the F016, up to seven

external drives can be added to a base FOl1lB system. Drive 0 is the main unit
and is controlled entirely by the FO0l1B. Drives 1 thru 7 are external drives,
an each must be connected to the FO011B with =z separate FQ1i4.

*** NOTE THAT THE C65 DOS SUPPORTS ONLY ONE EXTERNAL F0l6 EXPANSION DRIVE *#*#

CS5G4101~F016 Pinout:

Pin Name Active Dir Type Description
1 DS low output drive selected
2 MOT low output motor on
3 SIDE low output side select
4 WPROT low input write protect
5 TKO low input track 0
6 INDEX low input index
7 DR2 low input pullup drive assign dipswitch
8 DR1 low input pullup drive assign dipswitch
9 BRO low input pullup drive assign dipswitch
10 GND power :
11 RES low input master reset
12 LED low output, ~ panel LED
13 DIR outpud stepping direction
14 STEP low output stepping command
15 SPARE input
16 DSKIN low input disk inserted
17 SERIOQ low I/0 "bidir serial data
i3 CLK input serial data clock
19 LD input shift/load command
29 vCC power .

System Specification for C65 Fred Bowen . .. March 1, 1991-

" Signal descriptions:

RES

WPROT

DR

DSKIN

MoT

SIDE
STEP
DIR
2
TKO

INDEX

SERIO

LD

CLK

The Reset is a low-true input used to reset internal -flip-flops.
The DS {(drive selected) output will go false (hlgh) when RES
is asserted (low).

The Write Protect input must indicate, when true, that the
diskette in the attached drive must not be written to {the
drive itself will inhibit writing, as well).

This output, when low, indicates that the attached drive
is the currently selected drive. This signal will become
false (high) upon RESet and when another drive is selected.

The Disk In Input must indicate when a diskette is physically
in the attached drive, and the drive is available for use.

The Motor On output, when true, turns on the motor of the
attached disk drive.

The LED output, when true turns on the panel Light-emitting-~
diode of the attached disk drive.

The Side select output determines which side of the media
is to be read or written. It is high (false) for side 0, and
low (true) for side 1.

The Step output provides a low-going pulse when a head step
operation is required, assuming DS is true {low).

The Direction output indicates to the drives whether the
read/write head is to step toward track 0 (DIR=high) or away
from track 0 (DIR=low) when a step pulse is received,
assuming DS is true (low). -

The Track Zerc input must determine when the read/write head
of the attached drive is positioned over track zero.

The Index pulse input must provide a low going pulse for each
spindle rotation of the attached drive, if it has an index
sensor. The FOlé6 will latch index pulses until they are sent
out via the SERIQ line. This input must be tied low if the
attached drive has no index sensor.

The Serial I/0 line is a bi- dlrectlonal 31gnal that is used

to receive control information from the main didk controller,
and return status information to the main controller, assuming
the DS ocutput is true {low). It is a driven output when LD
and DS are low, and an input, otherwise.

The Load Data input tells when to updéte contrel information
shifted over the SERIO line, when to load status information
for shifting, and when to drive the SERIQO line.

The Clock input is used for shifting control and status
information.

System Specification for C65 Fred Bowen . : March 1, 1991

2.6.2 Expansion Port Timing

(used by all FO0lé chips)

LED|MOT|STP |[DIR{SID|DS2 |DS1{DSO|SPR|{DKI|DKC|IND|{PRT|TKO| SERIO

Legend:

Outputs... : Inputs...

LED Panel LED On " TKQ Track Zero
MOT Spindle Motor On DKI Disk Inserted
STP Step Pulse DKC Disk Changed
DIR Step Direction IND Index

SID Side Select PRT Write Protect
DS2-DS0 Drive Unit Select SFR Spare Input

The SERIC pin is bi-directional, and is used for both transmission of
drive control signals, and reception of drive status signals. The FQ11lB
will drive SERIQ when LD is high. Any selected FO0l6 will drive SERIO when LD

is low. All SERIO bits are low-true. BERIO will float high for nonexistant
drives, making all inputs look false. .

All FOl6 chips clock in serial data on the falling edge of CLK. They
update their contrel information on LD falling if the DS bits match the
DS0-DS2 switch settings. ALl FQl6 chips load their status inputs when LD 1is
high, and shift out serial status on the rising edge of CLK.

System Specification for C65 . Fred Bowen . - . March-l, 199#-

2.7 DMAgic DMA CONTROLLER F018 (Preliminary) -

2.7.1 F018 DESCRIPTION

DMAGIC is a custom DMA Gate array IC used in the C65. It
functions as a DMA controller with a few tricks up its sleeve.
Specifically, DMAgic provides the followxng commands

* COPY - Copy a block of memory to another area in memory.

* MIX - Perform a booléan Minterm mix of a source block of
memory with a destination block of memory.. -

* SWAP - Exchange the contents of two blocks of memory.

* FILL - Fill a block_of memory with a source byte.
Special features include: '

* List-based fetching of DMA command sequences.

* Ability to CHAIN multiple DMA commandfsequonces.

* Absolute Address access to entire System Memory (8MB).

* Blocks can be up to 64K bytes long. _

* Windowed Block capability using MODulus function.

* DMAgic operations vield to VIC video and external DMA accesses.

* DMAgic operations can optionally vield to system interrupts.

* Interrupted DMAgic operations can be continued/resumed, or
»cancelled.

* Data ReQuest handshaking support for IO devices.

* Independent memory/mapped IO selection for sourcs and destination.’
* Independent memory tranfer DIRection for source and destination.

* Independent MQDﬁlus enable for source and destination.

* Independent HOLD (fixed pointer) for source and desgination.

The DMA controller Has 4 registers:

0 DMA List address low, Triggers DMA (write only)

1l DMA List address high : , {write only)
-2 DMA List address bank _ (write only)

3 DMA Status (b7=busy, bO=chained) (read only)

{a read will restart an INTerupted DMA operation)

Note: Minterns & SubCommand will not be implemented until FO018A, at which
: time the register map will be reorganized & support for the REC added.

dma_ctlr = $D700 :DMA Controller

System. Specification for C65

2.7.2
REG R
NAME 2
COMMAND 0
CNT LO 1
{CoL)
CNT HT 2
(ROW)
SRC LO 3
(FILL)
SRC HI 4
SRC BANK 5
DEST LO 6
DEST HI 7
DEST BANK 8
MOD LO .9
MOD HI 10

Fred Bowen March 1, 1991
F018 REGISTERS
FU18 DMA CONTROLLER .

BT B6 BS B4 B3 B2 Bl BO
saDA | SADA | SADA | Sapa INT CHAIN OPERATION

c7 c6 cs c4 c3 c2 C1 co

c15 | c14 c13 c12 c11 C10 c9 c8

sa7 | sas SAS | sad SA3 SA2 SA1 SA0
SAl15 | sai4 SAl3 SA12 SAll SAl0 SA9 sa8
1/0 DIR MOD HOLD SAl9 SAlg SAL7 SAl6

p

DA7 DAG DAS DA4 DA3 'DA2 DAl DAO
pal5 | DAls pAl3 | pa12 | pal: DA10 DA9 DAS
1/0 DIR 'MOD HOLD DA19 palg | ,Dal7? DAL6

M7 M6 MS M4 M3 M2 M1 MO

M15 M14 M13 M12 M11 M10 M9 M8

ra

System Specification for C65

‘OPERATIONS:

PARAMETERS :

BOOLEAN MINTERMS:

SA

>

HEREOO
HOFO

PO HO

CHAIN

Fred Bowen March 1, 1991

COPY
MIX (MINTERMS ACTIVE)
SWAP : ‘

FILL (SRC LO = FILL BYTE)

NO INTERRUPTION _
IRQ/NMI INTERRUPTION

LAST COMMAND IN LIST
PERFORM NEXT COMMAND

DA

SADA SADA

SADA | SADA

THE ABOVE COMMANDS ARE NOT YET IMPLEMENTED, AND SOME OF THEVREGISTER
- BITS DEFINED ARE DIFFERENT IN THE PILOT VERSIONS.

System Specification for C65 Fred Bowen March 1, 1991

2.8 RAM Expansion Controller

2.8.1 Functional Specification

C65 RAM EXPANSION FUNCTIONAL SPECIFICATION
*** THIS IS PRELIMINARY AND WILL BE CHANGING ***

The C65 RAM Expansion Card (REC) provides 1 megabyte of

expansion RAM for the C65 computer. The C65 4510/VIC-III provides 1MB
of address space, but rudimentary banking capability is provided by
the REC to allow several different memory configurations for both the

CPU and the VIC-III via available chip selects.

The REC presumes the following system memory map:

S00000-$S1FFFF 128K internal RAM

$20000-83FFFF 128K for internel System ROM
$40000-$7FFFF 256K reserved for cartridge expansion
380000-$FFFFF 512K reserved for RAM expansion

The REC contains a four-bit write-only register. Data is read from
the four low-order bits of the data bus, Reset forces all of these

bits into the reset (low) state. The four bits are defined as:

>
CPU bank select
/ VIC access enable
'y VIC address range
/77 VIC Bank select
/777
3210 VIC sees: -
x0xx Internal RAM $00000-S1FFFF

x100 Expansion RAM bank 0, physical address S$CC000-SDFEFF
x110 -Expansion RAM bank 0, physical address S$E0000-SFFFFF
x101 Expansion RAM bank 1, physical address $C0000-S$DFFFF
x11ll Expansion RAM bank 1, physical address SEQ000-S$EFFFF

CPU sees (note that DMA and VIC-DAT access see this too):

Oxxx Expansion RAM bank 0
Ixxx Expansion RAM bank 1

System Specification for C65 Fred Bowen - March 1, 1991

/* Inputs */

PIN 1 = MEMCLK
PIN 2 = {CAS ;
PIN 3 = AEC :
PIN 4 = B3 ;
PIN 5 = Al9 ;
PIN € = Al8 ;
PIN 7 = Al7 ;:
PIN 8 = Alé ;
PIN 9 = AT ;
PIN 10 = RW ;
PIN 11 = !SID
PIN 13 = BZ ;
PIN 14 = Bl ;
PIN 23 = B0 :

* Qutputs */

L

: /* System memory clock *x/
/* Correct timing for CAS signal */
/* The VIC is in town */
/* bit to control CPU accesses */
/* high order address lines */

/* Chip select for SID. Used as a decode */
/* bits to control VIC accesses */

PIN 15 = !CAS0B ; /* Cases for the DRAMS */

PIN 16 = ICAS0A ;

PIN 17 = !CASIB :

PIN 18 = ICAS1A ;

PIN 19 = !EXPAND ; /* Signal to system to allow internal ram out */
PIN 20 = MA8 ; /* High order Memory address line DRAMS */
PIN 21 = !BRDGOE ! /* Enable for the Gardei Bridge */

PIN 22 = EX LATCH ; /* Strobe for user write to control latch */
VvVIC = 1ARC ;

RAST = IMEMCLK :

CAST = MEMCLK :

EXVIC = BO ;

VICSELO = Bl ;

VICSELL =2 ;

CPUBANK = B3 ;

EX_LATCH = CAS &

SID & A7 & !RW ; /* location of control register */

/* latch data on cas fall t¢ avoid the phi-2 hold time problem */
LRDGOE = EXPAND & RAl6 & !VIC ; /* CPU accessing E bank side. */
EXPAND = !VIC & Al9 . _ /* ram area */
#§ VIC & EXVIC ; /* external vic accesses allowed*/
MAS = VIC & RAST & !Al6 /* Ras time, keep upper Yx/
#§ VIC & CAST & VICSELO /* Cas time, programable. *x/
'VIC & RAST & AlS8 /* ras time */
§ IVIC & CAST & Al7 ; /* cas time */
/* bank 0 drams */ .
CASOA = CAS & EXPAND & (!VIC & ICPUBANK & !'Al6 # VIC & !VICSELL):
CASOB = CAS & EXPAND & (!VIC & !CPUBANK & Al6 # VIC & !VICSELL):
" /* bank 1 drams */
CAS1A = CAS & EXPAND & (!VIC & CPUBANK & !Alé # VIC & VICSELL):
CAsSlB - =

CAS & EXPAND & (!VIC & CPUBANK & Al6 # VIC & VICSELL);

System Specification for C6S

2.9 8580 SID REGISTER MAP
7 6 5 4 -3 2 1 0

0 F7 F6 F5 F4 F3 F2 Fl FO FREQUENCY L0 VOICE-1
1 F15 F14 F13 F12 Fl11 F10 F9 F8 FREQUENCY KI

2 PW7 PW6 PWS PW4 PW3 PW2 | PW1 PW0 { PULSE WIDTH L0

3 PW1l | PW10 PW9 PWS | PULSE WIDTH HI

4 NOISE{ PULSE| SAW | TRI | TEST | RING | SYNC | GATE | CONTROL REGISTER

5 ATK3 | ATK2 | ATK1 | ATKO | DCY3 | DCY2 | DCYI | DCY ATTACK / DECAY

6 STN3 | STN2 | STN1 | STNO | RLS3 | RLS2 | RLS1 | RLSO | SUSTAIN / RELEASE

7 F7 Fé. F5 F4 F3 F2 F1 F0 | FREQUENCY LO VOICE-2
8 F15 F14 F13 F12 F11 F10 F9 F8§ FREQUENCY HI

9 PW7 PW6 PH5 PW4 PW3 PW2 PW1 PW0 { PULSE WIDTH LO
10 PW1l | PW10 PW9 PW8 | PULSE WIDTH HI
11 NOISE| PULSE| SAW | TRI { TEST | RING | SYNC | GATE | CONTROL REGISTER
12 ATK3 | ATK2 | ATK1 | ATKO | DCY3 | DCY2 | DCYl | BCY0 | ATTACK /° DECAY
13 STN3 | STN2 | STNI | STNO | RLS3 | RLSZ | RLS1 { RLSO | SUSTAIN / RELEASE

14 F7 Fé F5 F4 F3 F2 F1 FO FREQUENCY L0 VOICE-3
15 F15 F14 F13 F12 Fl11 F10 F9 F8 FREQUENCY RI

16 PW7 PWE PWS PW4 PW3 PW2 PWl | PWO | PULSE WIDTH LO

17 PW1l | PW10 PWY PW8 | PULSE WIDTH HI

18 NOISE!| PULSE| SAW | -TRI | TEST { RING | SYNC { GATE | CONTROL REGISTER

19 ATK3 | ATK2 | ATK1 | ATKO | DCY¥3 | DCY2 | DCYl | DCYO | ATTACK / DECAY
20 STN3 | STNZ | STN1 | STNO | RLS3 | RLS2 | RLS1 | RLSO | SUSTAIN / RELEASE

21 FC2 FC1 FCO | FREQUENCY LO FILTER
22 FC10 FC9 FC8 FC7? FC6 | FCS FC4 FC3 | FREQUENCY HI
23 RES3 | RES2 | RES1 | RESO {FILTEA] FILT3{ FILT2! FILTO| RESONANCE / FILTER
24 3 OFF}{ HP BP Lp VOL3 | VOL2 | VOL1 | VOLO | MODE / VOLUME

25 PX7 PX6 PX5 PX4 PX3 | PX2 px1 pX0 | poT X MISC.
26 PY? PY6 PYS PY4 PY3 PY2 PY1 PYO | POT ¥

27 07 06 05 04 03 02 01 00 OSCILIATOR 3
28 E7 E6 ES £4 E3 E2 El E0” | ENVELOEE 3

Notes: s

Fred Bowen

March 1, 1991

1. Cra#l ports PRA6 and PRA7 select which control port POT line

is routed to SID.

2. While there are 2 SIDs in the C65, the POT lines are still
routed to SID#1 for C64 compatibility reasons.

System Specification for Cé5 . Fred Bowen March 1, 1991:

3.0 System Software

3.1 BASIC 10.0 -

C64DX BASIC 10.0

3.1.1 INTRODUCTION

This section lists BASIC 10.0 commands, statements, and functions in
alphabetical order. It gives a complete 1list of the rules (syntax) of
BASIC 10.0, along with a concise description of each.

3.1.1.1 COMMAND AND STATEMENT FORMAT

The commands and statements presented in this section are governed
by consistant format - conventions designed to make them as clear as
possible. In most cases, there are several actual examples to
illustrate what the actual command looks like., The following example
shows some of the format conventions that are used in the BASIC commands:

EXAMPLE : DLOAD <"program name"| (file name_var)> [,U#] [(,D#]
I | | |
| b . I |
keyword - argument (if any) optional arguments

The parts of the command or statement that the user must type in
exactly as they appear are in capital letters. Words that don’t have to
be typed exactly, such as the name of the program, are not capitalized.
When quote marks (" ") appear {usually arcund a program or file name},
the user should include them in the approprlate rlace according, to the
format example. .

System Specification for C§5 Fred Bowen . March 1, 1981

KEYWORDS, also called RESERVED WORDS, appear in uppercase letters.

THESE KEYWORDS MUST BE ENTERED EXACTLY AS THEY APPEAR. However, many
keywords have abbreviations that can also be used.

Keywords are words that are part of the BASIC language that the
computer understands. Keywords are the central part of a command or
Statement. They tell the computer what kind of action to take. These
words cannot be used as variable names. : .

ARGUMENTS (also called parameters) appear in lower case. Arguments
are the parts of a command or Statement; they complement keywords by
providing specific information about the command or statement. Fer
example, a keyword tells the computer to load a program, while the

argument tells the computer which specific program to load and a second

argument specifies which drive the disk containing the program is in.
Arguments include filenames, variables, line numbers, etc. :

SQUARE BRACKETS [] show OPTIONAL arguments. The user selects any
or none of the arguments listed, depending on the requirements.

ANGLE BRACKETS <> indicates that the user MUST chcocose one of the
arguments listed.

VERTICAL BAR | separates items in a list of arguments when the
choices are limited to those arguments listed, and no other arguments
can be used. When the vertical bar appears in a list enclosed in SQUARE
BRACKETS, the choices are limited to the items in the list, but still
have the option not to use any arguments.

ELLIPSIS ..., a sequence of three dots, meaﬁs that an option or
argument can be repeated more than once.

QUOTATION MARKS " "™ enclose chailcter strings, filenames, and other
expressions. When arguments are enclosed in quotation marks in a
format, the quotation marks must be included in a command f£ile or
statement. Quotation marks are not. conventions wused to describe
formats:; they are required pazrts of a command or statement.

) PARENTHESES () When arguments are enclosed in parentheses in a
format, they must be included in a command or statement. Parentheses

are not conventions used to describe formats; they ‘are required parts of

a command or statement.

VARIABLE refers to any valid BASIC variéble'name such as X, AS, or T%.
.]

EXPRESSION means any valid BASIC expression, such as A+B+2 or .5*(X+3).

T

System Specification for Cé5

Fred Bowen

3.1.2 ALPHABETICAL LIST OF COMMANDS, FUNCTIONS, and OPERATORS

PV I ANT + %

BACKGROUND

BACKUP

BANK

BEGIN

BEND

BLOAD

BOOT

BORDER

BOX

BSAVE

BUMP

BVERIFY

CATALOG

CHANGE

CHAR

CHRS >

CIRCLE

CLOSE

CLR

“MD

_OLLECT

! OLLISION
COLOR

CONCAT

CONT

COPY

COS

cuUT

DATA

DCLEAR

DCLOSE

DEC

DEF

DELETE

DIM

DIR

DISK

Token
Token
Token
Token
Tcken
Token
Token
Token

Token

Tcken
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Tocken
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token

-Token

Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token

e nu

I

2 I I I T T O (T T 1 T ' I T T

AC

FF
B6
FE,QE
Cé
Cl

FE, 3B
F&

FE, 02

FE, 18
FE, 19
FE, 11
FE,1B
FE, 3C
El

FE, 10
CE, 03
FE, 28
FE, 0C
FE, 2C

multiplication
addition
subtraction
division
less=-than
equal
greater-than
exponentiation

return value of PI

absolute function

logical AND operator

append file

string to PETSCII function
trigometric arctangent function
auto line numbering
background color

backup diskette

memory bank selection

start logical program block
end logical program block
binary load file from diskette
load & run ML, or BASIC autoboot
border color

draw graphic box

binary save to disk file
sprite collision function
verify memory to binary file
disk directory

edit program

display characters on screen
PETSCII to string finction

. draw graphic circle

close channel or file

clear BASIC variables, etc.
set output channel

validate diskette (chkdsk)
enable BASIC event

set screen colors

concatenate two disk files
continue BASIC program execution
copy a disk file o
trigometric cosine function
cut graphic area

pre-define BASIC program data
mild reset of disk drive
close disk channel or file
decimal function

‘define user function

delete BASIC lines or disk file
dimension BASIC array

disk directory)

send disk special command

March 1, 1991

System Specification for C65

DSAVE
DVERIFY
ELLIPSE
ELSE
END

- ENVELQOPE

ERASE
ERR$
EXIT
EXP
FAST
FILTER
FIND
FN

FOR

FOREGROUND
FRE -
GCOPY
GENLOCK
GET

GO
GOSUB
GOTO
GRAPHIC
HEADER
HELP
BEXS
BIGHLIGHT
iFr
INPUT
INPUT#
INSTR
INT

JOY

KEY
LEFTS
LEN

LET
LINE
LIST
LOAD
LOCATE
LOoG
LOOP
LPEN
MIDS
MONITOR
MOUSE
MOVSPR
NEW

Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token

Token .

Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token

Token

Token
Token
Token

LI A e I I N N RN R Huw W anmunn

F0
FE, 1F
FE, 21
¥E,23
FE, 35
EB
FE, 0D
FE, 36
EF
FE, 14
FE, 30
D5
80
FE, 0A

FE, 23

D3

Fred Bowen March 1, 1991
load BASIC program from disk

define & execute DMA command

"

set graphic draw mode
start BASIC loop

open channel to disk file
set graphic draw pattern

-

" save BASIC program to disk

verify BASIC memory to file
draw graphic ellipse '

.if/then/else clause

end of BASIC program

define musical instrument

delete disk file

BASIC error function

exit BASIC loop

exponentiation function

set system speed to maximum

set audio filter parameters

hunt for string in BASIC program
define user function

start BASIC for/next loop

set foreground color

available memory function
graphic copy '

set video sync mode

receive a byte of input

program branch

program subroutine call

Program branch

set graphic mode

format a diskette

display BASIC line causing error
return hexidecimal string function

- set highlight coler
if/then/else conditional

recieve input data from keyboard

-recieve input data from channel (file)
‘locate a string within a string

integer function

joystick position function
define or display function key
leftmost substring function
length of string functien
variable assignment -

draw graphic line, input line

'list BASIC program

load program from disk

: {currently unimplemented)
natural log function
end of do/loop
lightpen position function
substring function
enter ML Monitor mode
set mouse parameters
set sprite position and speed
clear BASIC program area

System Specification for C&5

NEXT

POINTER

PCKE

POLYGON
RE]

-OT
PRINT
PRINT#
PUDEF
QUIT
RCLR
RDOT

RSPCOLCOR
_8PPOS
 SPRITE
KUN
RWINDOW
SAVE-
SCALE
SCNCLR
SCRATCH
SCREEN
SET

SGN

SIN
SLEEP
SLOW
SOUND
SPC
SPRCOLOR
SPRDEF
SPRITE
SPRSAV

2

Token
Token
Token
Token
Token
Token
Token
Tcken
Token
Token
Token
Token
Tcken
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token
Token

IR IR R IR T I (I T O T 1 1 I 1 L O 1 T T O O _Il W onos e wnnu

Fred Bowen. March 1, 1991

end of for-next loop

logical complement function
{subcommand)

multiple branch or subcommand

open 1/0 channel :

logical or function

graphic flood-£fill

- set palette color :
. draw graphic area from cut buffer

return memory byte function

set graphic pen color

graphic subcommand

play musical notes from string

address of string var function

change memcry byte

draw graphic pologon

text cursor position function '

return paddle position

display data on text screen

send data to channel- {file)

define print-using symbols
{currently unimplemented)
{currently unimplemented)

- {currently unimplemented)

read program pre-defined program data

set Relative disk file record pointer

BASIC program comment

rename disk file

renumber BASIC program lines

set DATA pointer, subcommand

resume BASIC pregram after trap

end of subroutine call :
{(currently unimplemented)

rightmost substring function

read mouse position

- pseudo random number function

return processor registers after SYS
return sprite color function =
return sprite position function

. return sprite parameter function

run BASIC program from memory or disk
return text window parameter function
save BASIC program to disk
{(currently unimplemented)
erase text or graphic dlsplay
delete disk file
set parameters or open graphic screen
set system parameter, subcommand
return sign of number function
trigometric. sine function
pause BASIC program for time perlod
set system speed to minimum
perform sound effects
skip spaces in printed output
set multicolor sprite .colors
(currently unimplemented)
set sprite parameters
set or copy sprite definition

System Specification for C65

SOR
STEP
STOP
STRS
5Ys
TAB {
TAN
TEMPO

VAL
VERIFY
VIEWPCORT
vOL
WALT
WHILE
WIDTH
WINDOW
XCR

Token
Token
Token
Token
Token
Token
Taken
Token
Token
Tcken
Tcken
Token
Token
Token
Token
Tcken
Token
Token
Token
Token
Token
Token

- Token

Token
Token
Token

[T T O T 2O 2O T O IO IO 1O

BA
A9
90
C4
9E
A3
co
FE, 05
A7
Ad
D7

Fred Bowen March 1, 1991
square root function
for-next step increment
halt BASIC program
string representatlon of number functlon
call ML routine
tab p031tlon in printed output
trigometric tangent function
set tempo (speed) of music play
if/then/else clause
{subcommand)}
define BASIC error handler
BASIC trace mode disable
BASIC trace mode enable
display sequential disk file
do/loop conditional
define print output format
call user ML function
numeric value of a string function
compare memcry to disk file
{currently unimplemented)
set audio wvolume
pause program pending memory condition
do/loop contitional
{currently unimplenented)
set text screen display window
logical xor function

./:
(Y.

System Specification for C6é5 Fred Bowen. March 1, i991-
3.1.3 BASIC 10.0 COMMAND AND FUNCTION DESCRIPTION

ABS - Absolute wvalue function
ABS (expression}

The ABSolute value function returns the unsigned value of the numeric
expression. ' :
ABS (1) Result is X)

X
X ABS (-1} Result is X

nn

W
=

AND -~ Boolean operator
expression AND expression

The AND operator returns a numeric value equal to the logical AND of
two numeric expressions, operating on the binary value of signed
16-bit integers in the range (-32768 to 32767). Numbers outside this
range result in an ‘ILLEGAL QUANTITY’ error.

X =4 AND 12 Result is X=4
X =8 AND 12 Result is X=8
X =2 AND 12 Result is X=0

‘In the case of logical comparisons, the numeric value of a true
situation is -1 {equivalent to 65535 or S$FFFF hex) and the numeric
value of a false situation is zero. :

X = (“ABC"="ABC") AND ("DEF"="DEF") Result is X=-1 (true)
X = ("ABC"="ABC") AND ("DEF"="XYZ") . Result is X= 0 (false)

) .
APPEND - Open a disk file and prepare to append data to it
APPEND# logical_file number, "filename" [,Ddrive] [<ON|,>Udevice]
Opens filename for writing, and positions the file pointer at the end
of the file. Subsequent PRINT# statements to the logical file number
will cause data to be appended to the end of this file. TIf the file
does not exist, it will be created. :
APPEND#1, "filename" o ,
APPEND#1, (file$), ON U(unit) o '
ASC — PETSCII value function
ASC (string)
This function returns the PETSCII numeric value of the first character
of a string. The PETSCII value of an empty (null) string is zero.
This function is the opposite of the CHRS function. Refer to the
Table of PETSCII Character Codes.
X = ASC("ABC") Resuit is X=65
X = ASC{"") Result is X=0
ATN - Arc tangent function

ATN (expression)

This function returns the angle whose tangent is the value of the
numeric expression, measured in radians. The result is in the range
of -P1/2 to PI/2 radians.

X = ATN(45) Result is X=1.,54050257

To get the arc tangent of an angle measured in degrees, multiply the.
numeric expression by pi/180. .

AUTO — Enable or disable automatic line numbering _ -
AUTO [increment]

Turns on the automatic line nurbering feature which eases the job of
eéntering programs by typing the line numbers for the user. As each
program line is entered by pressing RETURN the next line number is
printed on the screen, with the cursor in position to begin typing that
line. The increment parameter refers to the increment between line
numbers. AUTO with no increment given turns off auto line numbering,
AUTO mode is also turned off automatically when a program is RUN. This
Statement is executable only in direct mode. : :

AUTO 10 automatically numbers line in increments of ten.
AUTO 50 automatically numbers line in increments of fifty.

AUTO turns off automatic line numbering. .

BACKGROUND - Set the backgfound‘color of the display
BACKGROUND color |

P

Sets the screen background color to the given color. The color
given must be in the range (.#15). See the Color Table.

BACKUP - Backup an entire disk from one drive to another
BACKUP Dsource_drive TO Ddestination_drive [<0N!,>Udevice}'

This command copies all the files on a diskette to another on a dual
drive system only. It cannot backup diskettes using CBM serial bus
type drives, for example. If the destination diskette is unformatted,
BACKUP will automatically format it. BACKUP copies every sector, so
any data already on the destination diskette will be overwritten. To
copy specific files from one drive to another, use the CPPY command.

NOTE: This command can only be used with a dual disk drive, such as

the built-in C64DX drive and optional F0l6-type expansion drive. To
backup diskettes using different drives, such as the built-in drive

and a 158l-type serial bus drive, use a utility program.

BACKUP DO to D1 Copies all files from the disk in
drive 0 to the disk in drive 1.

BACKUP DO TO D1, ON U9 Copies all files from drive 0 to
drive 1 in disk drive unit 9.
BANK - Set the memory bank number for PEEK,POKE, SYS, WAIT, LOAD, SAVE
BANK memory_ bank
{*** THIS COMMAND MIGHT CHANGE *xx]

{

This command should be used before and BASIC command that has an
address parameter. The address parameters are limited to the range
(0-65535, S50000-S$FFFF hex). The BANK command tells the computer
which 64K byte memory bank the location you want is in.

The memory_bank parameter is number from 0-255. Refer to the System
memory map to see what is in each bank. A BANK number greater than
127 (i.e., has its most significant bit set) means "use the current
system configuration™, and must be used to access an 1I/0 locatlon.
BASIC defaults to BANK 128.

For examples, see PEEK, POKE, etc.

BEGIN/BEND - Extend an IF clause over more than one line

BEGIN/BEND are used to define a block of code which is considered
by the IF statement to be one statement.

The normal usage of IF/THEN/ELSE would be along the following lines:
IF boolean THBEN statement(s) : ELSE statement (s)
The main restriction is that the entire body of the IF/THEN/ELSE

construct can only occupy one line, BEGIN/BEND allows either the
'THEN’ or the ’'ELSE’ clause to run on for more than one line,

IF boolean THEN BEGIN : statements....

statements..,. :
statements... BEND : ELSE BEGIN
statements...

statements... BEND
Remember, however, that this is only a way to extend the body for
more than one line: all other 7IF/THEN’ rules apply. For example:

? 100 IF x=1 THEN BEGIN : a=5
110 : b=6
120 ¢+ ¢=7

130 BEND : print ™ah-ha!"

In the above example, "ah-ha!" would be printed ONLY if the expression
expression ‘x=1’ is TRUE, because the print statement is on the same
logical line as the THEN clause.

It is bhad practlce to GOTO a line in the middle of a BEGIN-BEND block.
If BEGIN or BEND is encountered outside of an active IF;statement, it
is ignored.

BLOAD - loads a binary disk file into memory
BLOAD "filename* [,Bbank] [(,Paddress] [<ON|{,>Udevice}

Used to lecad a machine language program or other binary data (such

as display pictures or sprite data) into memory. If a load address is
not given, the load address given in the disk file will be used., If a
barnk number is not given, the bank given in the last BANK statement
will be used. If a load overflows a bank (that is, the load address
exceeds 65535 (SFFFF), an 'OUT OF MEMORY’ error is reported.

Also see the LOAD command.

BLOAD "sprites", P(dec("600")), BO

BOOT - Load and execute a program

BOOT
BOQT SYS
BOOT filename [,Bbank] [,Paddress] {,Ddrive] [<ON|,>Udevice]

BOOT without a filename given causes the computer to look for a BASIC
program called AUTOBOOT.C65* on the indicated diskette, LOAD it and
RUN it (just like RUN "AUTOBOOT.CE5*").) :

BOOT with a filename given will cause the executable binary file to be
BLOADed and executed beginning at the load address. If a load address
is not given, the file will be loaded and execution begun at the

address stored on disk.

BOOT SYS is a special command that copies the "home®™ sector (the very
track and sector) of the C64DX built-in drive into memory at address
3400 to $SFF (one physical sector, 512 bytes} and perform a machine
language JSR (Jump SubRoutine) to it. It has the same function as
turning on your C64DX while holding down the ALT key. It is used to
boot an alternate operating system from either a CBM 3.5" diskette or
an MSDOS (720K) diskette. 1If used in a BASIC program, and it fails,

the system can be corrupted. BOOT SYS does *not* use the normal DOS
to access the disk.

BOOT Loads & runs BASIC program called
AUTOBOQT.C65* on system disk.

BOOT U9 _ Loads & runs BASIC program called
AUTOBOOT.C65* on disk unit 9.

BOOT "ml" Load & executes machine language '
program called ML, starting at address
stored on disk.

-

: ‘ ‘ ? .
BORDER ~ Set the exterior border color of the display

BORDER color
Sets the screen border color to given color. The color must be in
the range (0-15). See the Color Table.
BOX - Draw a 4-sided graphical shape -

BOX x0,y0, x1,y0, x0,yl, x1,yl [,solid)
-]

Requires two line segments to be specified, the order of which
determines the shape drawn. The shape is drawn in the currently

specified PEN color, on the currently specified SCREEN. The above
command will draw the following shape:

l0,=1 |1,=1
But if the order of the coordinates were given as:
BOX x0,y0, x1,y0, xi,yl, x0,yl

a “bowtie" shape would be drawn. See the sample program at SCREEN.

BSAVE - Save an area of memory in binary disk file

BSAVE "[@)filename", Pstart_adr TO Pend_adr [,Bbank] (,Ddrive] [<ON|,>ﬁdevice]

BSAVE copies an area of memory into 2 binary disk file called
"filename®™, starting at start_adr and ending at end_adr-1 (i.e.,

end adr must be one more than actual last address saved). If a bank
number is not given, the bank given in the last BANK statément will
be used. End adr must be greater than start adr, and area to be saved
must be limited to the indicated memory bank. You cannot save data
from more than one bank at a time. Start_adr is saved on disk as the
load address. If filename already exists on the designated diskette,
memory is NOT saved and a 'FILE EXITS’ error is reported. Preceding
the filename with an ’@’-sign will allow you to overwrzte an existing
file, but see the cautions at DSAVE.

BSAVE "sprites®, P(dec("600™)) TO P({dec("800"}}, BO

BUMP - Sprite collision function
BUMP (type)

This function return a numeric summary of sprite collisions
accumulated since the last time the BUMP. function was used.

You can use the COLLISION command to set up a special routine in
your program t¢ receive control whenever a sprite BUMPs into
something, but a particular COLLISION does not have to be enabled
to use BUMP. See the COLLISION command.

To evaluate sprite c0111510ns, where a BIT position (0-7) in the
numeric result corresponds to a sprite number (0-7):

BIT position: 765 4 32160

: [O I O ‘ ,
BUMP value in binary: cooo0o00101 = 5 decimal
k
BUMP (1) returns a value representing sprite-to-sprite collisions.
BUMP (2) returns a value representing sprite-to-data collisions.

= BUMP (1} Result is X=3 if sprites 0 & 1 collided,
as shown above. (binary 101 = 5 decimal).

Note that more than one collision can be recorded, in which case you
should evaluate a sprite’s position using the RSPPOS function to

. figure out which sprite colllded with what. BUMP is reset to zero

after each use. I

BVERIFY - Compare a binary disk file to an area of memory
BVERIFY "filename" [,Paddress] [,Bbank] [,Ddrive] [<ON|,>Udevice])

BVERIFY compares a binary disk file called "filename" to an
area of memory. In direct mode, if the areas contain the same data

the message "QK" is displayed, and if the data differs the message
'VERIFY ERROR’ is displayed.

In program mode, an error is generated if a mismatch is found,
otherwise the program continues normally. The comparison starts with
the address given, else it starts at the address stored on disk.

The comparison ends when the last byte ls read from the disk file.

If a bank number is not given, the bank given in the last 'BANK
statement will be used. The ending address is determined by the
length of the disk file. The comparison halts on the first mismatch

or at the end of the file. The area to be compared must be confined

‘to the indicated memory bank.

BVERIFY “sprites", P(dec("600%™}), BO
CATALOG - see DIR (DIRECTORY) command . =

CHANGE - Find text in a BASIC program and change it.

CHANGE :stringl: TO :string2: [,line_range]
CHANGE "stringl®™ TQ "string2™ {,line range]

This is a direct (edit) mode command. CHANGE looks for all occurances
of stringl in the program, displays each line containing stringl with

the target string highlighted, and prompts the user for one of the
following: ‘

Y<return> Yes, change it and lock for more
N<return> Ne, don’t change it, but look for more
*<return> Yes, change all occurances from here on
<return> Exit command now, don’t change anything

Any character can be used for the string delimiter, but there are
side effects: see comments at FIND command. If the line number range

is not given (see LIST for description of range parameter), the entire
program is searched.

CHAR - Draw a character string on a graphic screen _
CHAR column, row, height,”width, direction, "string" {,charsetadr]
[*** THIS IS BUBJECT TO CHANGE **¥]

CHAR displays text on a graphic screen at a given location. The
character height, width, and direction are programmable. The
parameters are defined as: :

column: Character position:
' For 320 wide screens, 0-39
_ For 640 wide screens, 0-79
Xow: Pixel line:
For 200 line screens, 0-~199
For 400 line screens, 0-399

height: Multiple of 8-~bit character heidht:
) 1= 8 pixels high, 2= 16 pixels, etc.
width: Multiple of 8-bit character width: A
: 1= 8 pixels high, 2= 16 pixels, etc.
direction: Bit mask: BO= up
T Bl= right
B2= down
B3= left

The string can consist of any printable character; as defined by the
VIC character set. Non-text characters are ignored. 1If the address

if the character set is not given, the upper/lower ROM character set
is used ($29800).

CHAR 18,96, 1,1,2, "C64D", DEC(9000")

The above example will draw the characters "C6&5D" in the center of a
320x200 pixel screen using the system’s uppercase/graphic character set.

CHR$ - Character string function
CHRS (value)

This function returns a string of one character having the PETSCII
value specified. This function is the opposite of the ASC function.
It’s often used in PRINT strings to output data that is not visible,
such as contrel codes and escape sequences. Refer to the Table of
PETSCII Character Codes.

PRINT CHRS$(27)"Q"; CH§$(27) is the escape character.
. This statement performs the
clear-to-end-of-line escape function.

CIRCIE - Draw a circle on a graphic screen
CIRCLE x_center, y_center, radius {,solid]

The CIRCLE command will draw a circle with the given radius centered
at (x_center,y_center) on the current graphic screen. The circle will
be filled (i.e., a disc) if SOLID is non-zero.

CIRCLE 160,100,50

The above example will draw a circle in the center of a 320x200 pixel
screen (160,100) having a radius of 50 pixels. The aspect ratio of the

screen may cause it to appear as an ellipse, however. See also the
ELLIPSE command.

CLOSE - Close a logical I/O channel

- -

CLOSE * logical_ channel_number

This command closes the input/output channel associated with the
cywen logical channel number, established by an OPEN statement.

In the case of buffered output (such as the serial bus or RS232) any
data in the device’s buffer will be transmitted before the channel is
closed. Refer to specific I/0 operations for details.

The logical_channel number is required; to close all channels on a
given device, use the DCLOSE command. Note that RUN, NEW, and CLR
commands will initialize the logical channel tables but will not
actually close any channels.

CLR - Clear program vaiiables
CLR

This statement initializes BASIC’s variable list, setting all numeric
variables to zero and string variables to null. It also initializes
the DATA pointer, BASIC runtime stack pointer (i.e., clears all GOSUBs,
DO/LOOPs, FOR/NEXT loops, etc.), and clears any user functions

(DEF FNx) . Any OPEN channels are forgotten (but a CLOSE is not
performed- don’t use if there are any open disk output files).

A CLeaR is automatically performed by a RUN or a NEW command.

CMD - Set default output channel
CMD logical_channel number {,String}

CMD changes the default output device, normally the screen, to that
specified. The logical_channel number can be any previously OPENed

write channel, such as one to a disk file, printer,. or R$232,

When redirected via CMD, all output which nermally would.go to the
screen (such as PRINT commands, LIST ocutput, DIRECTCRY lists, etec.)
is sent to another device or file.

The redirection is terminated by CLOSE-ing the CMD channel or executing
a PRINT# to the CMD channel. Some output devices require a PRINT# to
be performed before the CMD channel is closed, such as printers, to
cause the device’s buffer to be flushed (i.e., displayed) . '

Any system error will redirect output back to the system default,
normally the screen, but will not flush nor cloge the output channel.

If the optional string is given, it is output immediately after the
CMD device is established. This feature is normally used to set up
printers (eg., set printer modes via escape codes) or to identify
the output (eg., title printouts).

OPEN 4,4 OPENS device #4, which is the printer. _
CMD 4 All normal output now goes to the printer.
LIST The LISTing goes to the printer.

PRINT#4 Set output back to the screen.

CLOSE 4 Close the printer channel.

COLLECT - Check (validate) disk, delete bad files and free lost sectors
COLLECT [Ddrive] [<ON|,>Udevice]

Refer to the DOS ‘V’alidate command. This command will cause the DOS
to recalculate the Block Availability Bam (BAM) of the diskette in the
indicated drive, allocating only those sectors being used by wvalid,
properly closed files. All other sectors are marked as "free" and
improper files are automaticMly deleted.

Note: COLLECT should be used with extreme care, and MUST NOT be used
on diskettes with special boot sectors or direct access (eg., random)
files. In any case, be sure the diskette has been BACKUP-ed first.

COLLISION - Setup subroutine to handle special events
COLLISION type {,linenumber]
[*** THIS MIGHT CHANGE *xx]

‘ Il
COLLISION is used to handle "interrupt®™ situations in BASIC, such as
sprites bumping into things or lightpen triggers. When the specified
situation occurs, BASIC will finish processing the currently executing
instruction and perform an automatic GOSUB to the linenumber given,

When the subroutine terminates (it must end with a RETURN) BASIC will
resume processing where it left off. Interrupt handling continues
until a COLLISION of the same type but without any linenumber is
specified. More than one type interrupt may be enabled at the same
time, but only one interrupt can be handled at a time (i.e., no

recursion and no nesting of interrupts). The type interrupt can be:
1l ="Sprite to sprite collision
2 = Sprite to display data collision
3 = Light pen

Note that what caused an interrupt may continue causing interrupts
for some time unless the situation is altered or the interrupt is.
disabled. This is especially true for BASIC, which is slow to

respond to interrupts. Use the BUMP and RSPPOS functions to evaluate.
the resuits of sprite collisions, and the LPEN function to evaluate
" the position of a light pen.

10 COLLISION 1,90

20 SPRITE1l, 1:MOVSPR1,100,100:MOVSPR1, 045
30 SPRITEZ,1:MOVSPR2,100,150:MOVSPR2, 18045
40 DO:PRINT:LOOP :

50 END . :

90 PRINT"BUMP! ";:RETURN

In this example, sprite-~to-sprite collisions are enabled {line 10),
and two sprites are turned on, positioned, and made to move {lines
20 & 30). One sprite moves up and the other moves down while the _
program does nothing other than print blank lines to the screen {(line
40). When the sprite collide, the subroutine at line 90 is called,
it prints "BUMP!"™, and the computer goes back to printing blank lines.

COLOR — Enable or disable screen color (character attribute) control
CCLOR <ON|OFF>

COLOR turns on or turns off the screen editor’s attribute handler.
When colors are turned off, whatever character attributes are being
currently displayed (text coloer, underline, flash, etc.) are "stuck®.
The main purpose for doing this is to speed up screen handling
(writing to the screen or scrolling the screen) about two times,
since the screen editor no longer has to manipulate the attibutes,
Note that only FOREGROUND colors (and special VIC attributes) are
affected.

To change screen colors, .ise the following commands:

FOREGROUND colorg Set Foreground coleor (text)
HIGHLIGHT color# Set Highlight color (text)
2 BACKGROUND - color# Set VIC Background color

BORDER color# Set VIC Border color

CONCAT - Concatenate (merge) two sequehtial disk files‘
CONCAT "filel™([,Ddrivel] TO "file2"[,Ddrive2} [<ON[,>Udevice]

CONCAT merges two SEQuential files, appending the contents of
"filel" to "file2". Upon completion, "file2" contains the data

of both files, and "filel™ is unchanged. Both files mugt exist on
drives of the the same unit, and pattern matching is not allowed.

Some disk drives handle CONCAT differently; refer to the DOS manual
for specific details. : -

(-

CONT - Continue program execution
CONT

CONTinue is used to re-start a BASIC program that was halted

by a STOP or END statement, or interrupted by the STOP key. The
program will resume -at the statement following the STOP or END
instruction, or at the statement after the one that was interrupted
by the STOP key. CONT is typically used during program debugging.
You can look at and alter variables while the program ig halted.

Programs halted as a result of an untrapped error condition cannot
be CONTinued. Programs that have been edited in any way cannot

N

be restarted. Any error condition that occurs since the program
was halted will prevent it from being restarted. Programs that
cannot be restarted via CONT can be restarted with a GOTO, as long
as you don’t need to resume execution in the middle of a line of
commands and you recall where the halt occurred.

Note that the STOP key can interrupt some commands in midiexecution,
such as file I/0, drawing commands, etc. In such cases, programs
may not run correctly after a CONTinue.

COPY ~ Copy disk files
COPY ["filel™]{,Dd1] TO ["file2"][,Dd2} ([<ON{,>Udevice]

COPYs a disk file to another disk file. On single drive units, the
filenames must be different. On dual drive units, copying can be
done between two drives on the same unit, and the filenames can be
the same or different. Pattern matching an be used.. Copying files
from one unit to a different unit cannot be done; use a copy utility
program in such cases. Only legal type files can be copied; direct
access data, boot sectors, and partitions cannot be copied.

Refer to the DOS manual for your disk drive for specific details.
COPY "filel™ TO (£28) - Copies "filel™ to another file

whose name is in F2$ on the
same drive. Names must differ,

COPY "filel",D0 TO D1,U9 Copies "filel™ from unit 9
drive-0 to unit % drive-1.

CCPY DO TO D1 ~.Copies all files from drive-0
to drive-1 on the same unit.

COPY "?2?.src™,D0"TO "*%,D1 Copies all files on drive-0

matching the pattern to a file

. of the same name on drive-i,.

COS - Cosine function
COS (expression)

This function returns the cosine of X, where X is an angle measured
in radians. The result is in the range -1 -to 1.

X = COS{(pi) "~ Result ig X=-1

To get the cosine of an angle measured in degrees, multtiply the numeric

expression by pi/180.

CUT -~ Cut a graphic area into a temporary structure
CUT x,vy,dx,dy
[*** NOT YET IMPLEMENTED *kx]

DATA - Define program constant data to be accessed by READ command
DATA [list of constants] |

DATA statements store lists of data that will be accessed during
program execution by a READ statement. The DATA statement can appear
anywhere in the program, and it is never executed. BASIC keeps a
Pointer to the earliest un-READ DATA statement, and data is read
sequentially from first item in a DATA statement to the . last item,

i

from the earliest DATA statement in the program to. the last DATA
statemnent in the program.

The list of constants can contain both numeric data (lnteger or
‘floating point) and string data, but cannot contain expressions which
must be evaluated (such as 1+2, DEC("1234"), or CHR$(13)). Items are
separated by commas. String data need not be enclosed .in’quotes unless
it contains certain characters, such as spaces, commas, colons, graphic
characters, or control codes. If two commands have nothing bhetween
them, the data will be READ as 0 if numeric or a null string.

The RESTORE command allows you to position BASIC’s data pointer to a
specmflc line number. If the program tries to read more DATA than
exists in the program, an ‘QUT OF DATA’ error results. If a READ
statement’s variable type does not agree with the DATA being read, a
'TYPE MISMATCH'’ error results.

DATA 100, 200' FRED’ “HELLO; MOM“’ r 3-14' ABC123' -1.73-9

DCLEAR — Clear all open channels on disk drive
. DCLEAR [Ddrive] [<ON|,>Udevice}

DCLEAR sends the indicated disk drive an ‘I’nitialize command. This
clears all open channels, closes all open files, and causes the DOS to
re-read the diskette’s Block Allccation MAP (BAM). Note that DCLEAR
DOES NOT close open channels on the computer’s side (see the DCLOSE
command) . There are some other side affects caused by this command
with different types of drives- refer the DOS manual for your disk
drive for spec;flc details.

- -

DCIOSE —~ Close a disk file, or close all channels on a device

DCLOSE ([#logical file number] [<ON|,>Udevice]
’ .
DCLOSE is intended to close a file opened with the DOPEN command.
Specific files can be closed by specifying a logical_file number,
or all files on a particular drive can be closed by not spec1fy1ng
a particular logical_ flle number.

It is possible to close channels on non-disk devices with this
command by specifying only the device number.

DCLOSE#1 Closes the file associated with logical
logical file number 1.)

DCLOSE Closes all files currently open on the
default system drive.

DCLOSE: U (U2) Closes all channels open to device U2,

DEC - Decimal valhe function
DEC (hex_string)

This function return the decimal value of a string representing a
hexadecimal number in the range "0Q00" te "FFFF". The result is in
the range 0-65535. . If the string contains a non-hexadecimal digit
or is more than four (4) characters in length an "ILLEGAL QUANTITY'
error is reported.

viC = DEC{"D000™) Result is VIC=53248,
the address of the VI{ chip

DEF FN - Define function
DEF FNname (numeric_variable) = numeric_expression

Define a user-written numeric function. The DEF FNx statement must
be executed before the function can be used. Once a function has
“been defined, it can be used like any other numeric variable. The
function name is the letters FN followed by any legal floating point
(non~integer) variable name. A function can be defined only in a
program., -

The numeric_variable is a "dummy" variable. It names the.variable in
the numeric_expression which will be replaced when the function is
used. It’s not required to be used in the numeric expression, and
its value won’t be changed by the function call.

The numeric_expression performs the calculations of the function. It
is any legal numeric expression that fits on one line. Variables used
in the expression have their value at the time the function is used.

Functions can be used only by the program which defines them. If
one program chains to another program, the first program’s functions
cannot be used (usually a ’SYNTAX ERROR’ results). Similarly, if
the program is moved in any way after the function is defined, the
function cannot be used.

10 DEF FNR(MAX) = INT (RND (0) *MAX) +1
20 INPUT "MAXIMUM"; MAYX
30 PRINT FNR(MAX)

In this example, we’ve defined a function which will return a pseudo
random number between 1 and whatever MAX is. Instead of using the
expression INT(RND(0)*MAX)+1 every time a random number is needed, we
can now use FNR(MAX). When we use FNR(x), the value of 'x’ will be
be substituted everywhere MA.Y is used in the function definition,

10 DEF ENI(X) = X+1
20 DEF FNL(Z) = LEN(AS)

30 DEF FNAVG(N) = (TOT*CNT+N) / (CNT+1)

DELETE ~ Delete lines of BASIC program, or
Delete disk files s

DELETE (startline] [-[endline}]
DELETE "filespec" [,Ddrive] {<ON|,>Udevice] [,R]}
i

There are two forms of DELETE. The first form is used in direct mode
to remove lines from a BASIC program: :

DELETE 75 Deletes line 75,

DELETE 10 - 50 Deletes line 10 through S50 inclusive.

DELETE - 50 Deletes all lines from the beginning of
the program up to and including line 50,

DELETE 75- Deletes all lines from 75 to the end of

the program.

The second form is used in program or difect mode:to delete a disk
file. See the SCRATCH command. ' .

' DELETE "myfile® Deletes the file MYFILE on the system drive.

DIM - Declare array diménsionsr

DIM variable(subscripts) [rvariable (subscripts)}...

Before arrays of variables can be used, the program must first
execute a DIM statement to establish DIMensions of that

array (unless there are 1l or fewer elements in the array).
The statement DIM is followed by the name of the array, which
may be any legal variable name. Then, enclosed in parentheses,
put the number (or numeric wvariable) of elements in each
dimension. An array with more than one dimension is.- called a
matrix. Any number of dimensions may be used, but keep.in mind
that the whole list of variables bheing created takes up space
in memory, and it is easy to run out of memory if too many are
used. To figure the number of variables created with each DIM,
multiply the total number of elements in each dimension of the
array. Note: each array starts with element 0, and integer arrays
take up 2/5ths of the space of floating point arrays.

More than one array can be dimensioned in a DIM statement by
separating the arrays by commas. If the program executes a DIM
statement for any array more than once, the message 'REDIM’D ARRAY’

is reported. It is good programming practice to place DIM statements
near the beginning of the program.

10 DIM AS${40),B7(15),CC%(4,4,4)
! !]

41 elements 16 elements 125 elements

DIR - List the files of a diskette
DIRECTORY

DIRECTORY ["filespec"] [,R] [,Ddrive] [<ON|,>Udevice]

A directory is a list of the names of the files that are on a diskette.
The directory listing consists of the name of the diskette, the names,

sizes, and filetypes of all the files on a diskette, and the remaining

free space on the diskette. The filespec is used to specify a pattern .
match string to view selected files. -Not all disk drives support

tne same optlions or filespecs; refer to your DOS manual for details,

The C64DX allows you to print DIR listings without having to ’load’
the directory; see example below.

The commands DIR, DIRECTORY, and CATALOG have the exact same function.
They can be used in direct or program mode.

DIRECTORY List all files on the diskette

’ in the default system drive. .
DIR "*,grc*™, U9 , Lists the all the files’ending with
: ".src" on unit 9.
DIR "*,=p",R List all the deleted but recoverable

PRG-type files on the system drive,
OPEN4, 4:CMD4:DIR:CLOSE4 Print DIR listing to printer unit 4.
The following program can be used to load the directory into variables

for use within a program. 1In this case, the filename is simply printed
to the screen: :

10 CPEN 1,8,0,"50:%,P,R" open dir as a file

20 : IF DS THEN PRINT DS$: GOTOL100 abort if error

30 GET#1,X$5,X$ trash load address

40 D : read each line

50 : GET#1,X$,X$: IF ST THEN EXIT trash links, check eof
60 : GET#1,BLS,BHS - get file size

70 : LINE INPUT#1, F$. © get filename & type
80. : PRINT LEFTS(F$,18) print filename

90 : LooP ' - loop until eof

100 CLOSE 1 close dir

DISK - Send a disk command
DISK "command_string® ([<ON[,>Udevice]
The DISK command is used to send special commands to the
DOS via the disk drive’s command channel. The DISK command is
analogous to the following BASIC code: .
OPEN 1,n,15: PRINT#1, "command_string": CLOSE 1
Not all disk drives understand the same commands. Refer to ydur

DOS manual for commands and command syntax for your drive. Note
that the drive number, if any, must be included in the command_string.

DISK "U0>10" Renumber system drive to 10.
DISK "U0>V*+chr$ (D) Turn off write verify
DISK "S0:file"™ ,U(n) Scratch "file™ on unit n

DLOAD - Load a BASIC program file from disk
DLOAD "filename" [,Ddrive] [<ON|[,>Udevice]

This command copies a BASIC program from disk into the BASIC program
area of the computer. It can then be edited, DSAVEd, or RUN.

Used in program mode, it overlays the current program in memory and
begin execution automatically at the first line of the new program,
Variable definitions will be left intact, but any open data files and

the disk command channel will be automatically closed. This is called
CHAINING.

2 N
See also RUN. Use BLOAD to load binary or machine language data.

DLOAD "myprogram™ - Searches the default system disk drive
' for the BASIC program "myprogram®,
loads it, and relinks it.
DLOAD (F$),U9 LOADs a program whose name is in F$
from disk unit 9,

o}

DMA - Perform a DMA operation
DMA command [, length, source (1/h/b), dest {1/h/b), subcmd, mod (1/h) [r...71
[*** THIS COMMAND IS SUBJECT TO CHANGE *#*] -

The DMA command defines and executes a Direct Memory Access operation.
The parameters are used to construct a DMA list, which is then passed
to the DMA processor for execution. Refer to the DMA chip '
specification for details. Chained DMA commands are not allowed,

but multiple DMA commands can be given and the DMA handler will set up
and execute each one, one at a time. Refer to the system memory map
to find out where things are.

Because this command directly accesses system membry, extreme care
should be taken in its use. Changing the wrong memory locations can
crash the computer (press the reset button to reboct)._ . .

DMA 3, 2000, ASC("+"),0;. DEC("™800"),0 . Fill screen with 4+’
DMA 0, 2000, DEC("800"),0, DEC("8000"),1 - Copy screen to 518000

DMODE - Set graphic display mode
DMODE jam, comp, inverse, stencil, style, thickness
[*** THIS COMMAND IS SUBJECT TO CHANGE ***)

jam 0-1
complement c-1
inverse 0-1
stencil : 6-1
style 0-3
thickness 1-8

DO/LOOP/WHILE/UNTIL/EXIT - Program loop definition and control

DO [UNTIL boolean_expression | WHILE boolean_expression]

statements [EXIT]
LOOP ([UNTIL boolean_expression | WHILE boolean expression]

Performs the statements between the DO statement and the LOOP
statement. If no UNTIL or WHILE modifies either the DO or the LOOP
statement, execution of the intervening statements continues
indefinitely. If an EXIT statement is encountered in the body of

a DO loop, execution is transferred to the first statement following
the nearest LOOP statement. Do loops may be nested, following the
rules defined for FOR-NEXT loops. If the UNTIL parameter is used,
the program continues looping until the boolean argument is satisfied
(becomes true}). The WHILE parameter is basically the opposite of the
UNTIL parameter: the program continues looping as long as the boolean
argument is TRUE. An example of a boolean argument is A=1l, or G>65.

DO UNTIL X=0 or X=1 This loop will continue
: statements : until X=0 or X=1. 1If
b 4 LOCP X=0 or 1 at beginning,
: : the loop won’t execute.
10 AS="": DO GETKEY AS5: LOOP UNTIL AS="Q" This will loop until
- : the user types ’Q’
10 DOPEN#1, "FILE" This program will
20 C=0 . count the number of
30 DO: LINEINPUT#1,A$: C=C+1l: LOOP UNTIL S lines in FILE
40 DCLOSE#1
50 PRINT"FILE CONTAINS":C;" LINES.™ #

DOPEN - Open a disk file
DOPEN#1£, "filename[,<S|P>]" [,L{reclen]] [,W] [,Ddrive] [<ON|,>Udevice}

This command OPENs a file on disk for reading or writing.

Lf is the logical file number, which you will use in PRINT#, INPUT#,
GET#, RECORD#, and DCLOSE# commands to reference the channel to vour
file. The filename is required. The defaults are to OPEN a SEQuential
file for Reading, in which case the file must exist or a 'FILE NOT
FOUND’ error results. To create an file and write to it, use the
W rite option. ‘FILE EXISTS’ error is report if an output £ile
already exists. To read or write a RELative file, use the ’'L’ength
option. The ’‘reclen’ record length is required only when creating
a relative file. For more information regarding Relative files, see
the RECORD command and refer to your DOS manual. See also APPEND,

See the QPEN command for a discussion about channel and device numbers,

DOPEN#1, "readfile" Opens sequential READFILE for reading.

DOPEN#1, "writefile",W Creates & opens seq WRITEFILE for writing.
DOPEN#1, "file,P",U(u) Opens a PRoGram type file for reading on unit U
DOPEN#1, (rf$),L Open existing relative file whose name’s ‘in RFS$
DOPEN#a, "rel™,L80 Create a relative file with recorg length of 80

DPAT - Set graphic draw pattern
DPAT type {, # bytes, bytel, byte2, byte3, byted}
[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

type 0=-63
$ bytes : 1-4
bytel 0-255
byte2 0-255
byte3 0-255

byted 0-255

DSAVE - Save a BASIC program into a disk file
DSAVE "[@]filename™ [,Ddrive] [<ON|}, >Udevice]

This command copies a BASIC program in the computer’s BASIC memory
area into a PRoGram-type disk file. If the file already exists,

the program is NOT stored and the error message ‘FILE EXISTS! is
reported. If the filename is preceded with an ‘@7, then if the file
exists it will be replaced by the program in memory. Because of some
problems with the "save-with-replace’ option on older disk drives,
using this option is not *etommended if you do not know what disk drive

is being used. Use the DVERIFY to compare the program in memory with
a program on disk. :

To save a binary program, use the BSAVE command.

- DSAVE "myprogram” Creates the PRG-type file MYPROGRAM
‘ on the default system disk and copies
the BASIC program in memory into it.
DSAVE "@myprogram® Replaces the PRG-type file MYPROGRAM
with a new version of MYPROGRAM, If
MYPROGRAM doesn’t exist, it’s created.
DSAVE (F$),U9 Saves a program whose name is in F$
© on disk unit 9.

]
DVERTFY - Compare a program in memory with one on disk
DVERIFY "filename™ [,Ddrive] [<ON |, >Udevice]
This command is just like a DLOAD, but instead of LOADing the BASIC
program file into computer memory the data is read from disk and

compared to computer memory. If there’s any difference at all a
VERIFY ERROR’ is reported,.

Note: If the BASIC program in meﬁory is not located at the same address
as the version on disk was SAVEd from, the files will not match even if
the program is otherwise identical. The comparison ends when the last
byte is read from the disk file.

Use the BVERIFY command to compare memory with binary files.

DVERIFY "myprogram"

Good: SEARCHING FOR 0O:myprogram Bad: SEARCHING FOR 0:myprogram

VERIFYING . VERIFYING

OK ?VERIFY ERROR
ELLIPSE - Draw an ellipse on a graphic screen

ELLIPSE x_center, y_center, x radius, y radius [,solid]
The ELLIPSE command will draw an ellipse with the given radii centered
at (x_center,y center) on the current graphic screen. The ellipse
will be filled (i.e., a disc) if SOLID is non-zero.
ELLIPSE 160,100,65,50
The above example will draw an ellipse in the center of a 320x200 pixel'
screen (160,100) having radii of (65,50) pixels. The aspect ratio of
the screen may cause it to appear as an circle, however. See also the
CIRCLE command. .
ELSE -~ See IF/THEN/ELSE
END - Define the end of program executioh
END

The END statement terminates program execution. It does not close

channels or files, and it does not clear any variables or reset any

pointers. An END statement does not need to be put at the last line
of a program.

The CONTinue command can be”used to resume execution with the next
statement following the END statement. See also the STOP command.

EIVELOPE - Define musical instrument envelopes

_ENVELQPE n, [, [atk] [, [dec] '[. {sus] .{, [rel] [, [w£] [.pw]' 1111}

o S Envelope number (0-9)
atkc0nnn.. . Attack rate {0-15)
dec Decay rate {0-15)
sus e+.+. Sustain rate , (0-15)
rel Release rate - (0-13)
|2 S Waveform: 0 = triangle

1 = sawtooth

2 = pulsgse (square)

3 = noise

. : 4 = ring modulation

PW .e.essssaases Pulse width (0-4095)

[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

A parameter that is not specified will retain its current value.
Pulse width applies to pulse waves (wf=2) only and is determined by
the formula (pwout = pw/40.95 %), so that pw = 2048 produces a square
wave and values of 0 or 40985 produce constant DC output. The C64DX
initializes the ten (10) tune envelopes to:

n A D S R wf pw ' instrument

ENVELOPE 0, 0, 9, 0, 0, 2, 1536 : piano
ENVELQPE 1,12, 0,12, 0, 1 .accordion
- ENVELOPE 2, 0, 0,15, 0, O ‘callicope

ENVELOPE 3' 0; 5' 5' 0' 3 : drum

ENVEIIOPE 4’ 9’ 4’ 4' 0’ . 0 * flute

ENVELOPE 5, 0, 9, 2, 1, 1 guitar
ENVELOPE 6, 0, 9, 0, 0, 2, 512 harpsichord
ENVELOPE 7, 0, 9, 9, 0, 2, 2048 organ
ENVELOPE 8, 8, 9, 4, 1, 2, 512 trumpet

ENVELOPE 8, 0, 9, 0, 0, O xylophone

ERASE -~ Delete disk files
ERASE "filespec” [,Ddrive] [<ON|,>Udevice] [,R]

This command is identical to DELETE and SCRATCH. See the SCRATCH
command for details. ;

ERASE "myfile"™ Deletes the file MYFILE on the system drive,

ERRS — Error message function
ERRS (error_number)

This function returns a string which is the BASIC error message
corresponding to the given errcr message. If the given number is
too small (less than 1) or too large (greater than 41) an ’ILLEGAL
QUANTITY’ error is reported.

This function is usually used to display a BASIC error condition in
a TRAP routine, using the BASIC error word ER as the error number.
Note that when ER=-1, no BASIC error has occurred and ERS$({-1) results
in an illegal quantity error. ‘

See the example at TRAP.~ -

>
EXIT - See DO/LOOP/WHILE/UNTIL/EXIT

EXP - Function to return e*x

EXP (number)
This function returns the numeric value of-e (2,71828183), the base
of natural logarithms) raised to the power of given number, If the
number is greater than 88.0296919 an "OVERFLOW’ error is reported.

X = EXP (4) Result is X=54.5981501

FAST ~ Set system speed to 3.58MHz

FAST is the default state of the system. FAST is used to restore
this state following direct access of "slow" I/0 devices such as the
SID sound chips. :

FETCH — {see the DMA command)

FILTER - Define souﬁd filter parameters’

FILTER (freql [, [1p] [, (bp] [, [hp] [,res]]]]

freq Filter cut-off frequency (0-2947)
lp Low pass filter on (1), off (0)
bp Band pass filter on (1), off (0)

hp High pass filter on (1), off(0)
res Resonance {(0-15)

[*** THIS COMMAND IS SUBJECT TO CHANGE ***)

Unspecified parameters result in no change to the current value.

The filter output modes are additive. For example, both low pass and
high pass filters can be selected to produce a notch (or band reject)
filter response. For the filter to have an audible effect at least
one filter output mode must be selected and at least one voice must be
routed through the filter.

FIND - Find text in a BASIC program.

FIND :string: (,line_range]
FIND "string" [,line_range]

This is a direct (edit) mode command. FIND looks for all occurances
of string in the program and displays each line containing string,
with string highlighted. Use the C= key to slow the display, or the
NO-SCROLL key to pause the display. Press STOP to cancel.

Any character can be used for the string delimiter, but there are

side effects. Using a non-quote delimiter will cause the string to

be tokenized, and FIND will £ind only tokenized strings in the program
that match. Using a quote character as the delimiter will cause the
string to be interpreted as plain PETSCII, and any matches found will
therefore be plain PETSCII. Searching for some tokens such as DATA
Statements may require the use of colons as delimiters due to the
special affect these commands have upon the interpreter,

If the line number range 4s-not given (see LIST for description of
range parameter), the entire program is searched.

FRxx - User defined function
FNxx (expression)

The result of this numeric function is determined by the BASIC program
in a DEF FN statement. See the example at DEF FN.

'FOR/TO/STEP /NEXT - Program loop definition and control

'FOR index = start TO end [STEP ingrement] !
|
NEXT index [, index]

This command group performs a series of instructions a given number
of times. The loop index is a floating point (non-integer) variable
which will initially be set to the start value and be incremented by
the STEP increment when the NEXT statement is encountered. The loop
continues until the index exceeds the end value at the NEXT statement.

The start, end, and increment values can be numeric variables or
expressions. If the STEP increment is not specified, it is assumed to
be one (1). The STEP increment can be any value, positive, negative, -
. or non-integer. If the STEP increment is negative, the loop continues
until the index is less than the end value at the NEXT statement.

Note that, regardless of the start, end, or increment values, the loop
will alway execute at least once. The index can be modified within
the loop, but it is bad practice to do so. It is also bad practice to
GOTO a line inside a loop structure, or to similarly jump out of a

loop structure (which can cause an out of memory error).

Loops may be nested. IFf too many are nested, an ’'QUT OF MEMORY’ error
is reported (depends upon stack size, room for about 28 nested loops).

The index variable can be omitted from the NEXT statement, in which
case the NEXT will apply to the most recent FOR statement, If a NEXT
statement is encountered and there is no preceeding FOR statement,
the error ’NEXT WITHOUT FOR’ is reported.

10 FORL =1 TO 10

20 PRINT L

30 NEXT L

40 PRINT "I'M DONE! L = "L

This program prints the numbers from one to ten, followed by the
message I‘'M DONE! L = 11.

10 FORL = 1 TO 100

20 FOR A = 5 TO 11 STEP .5
30 NEXT A :

40 NEXT L

This program illustrates a nested loop.

- FOREGROUND ~ Set the text color of the display
FOREGROUND color

Sets the text color to the given. color index. Color must be
in the range (0-15). See the Color Table. COLOR must be ON (see
the COLOR command) . - -

FRE — Free byte function
FRE (x)

This function returns the number of availabie {"free™) bytes in a
specified area. - .

PRINT FRE(Q) Shows the amount of memory left in the program afea,
C64DX bank 0

X = FRE (1) X= the amount of avaliable memory in variable area,
C64DX bank 1. This causes a "garbage collect" to
occur, a process which compacts the string area. .

X = FRE{2) X= the number of expansion RAM banks present.

- GCOPY -~ Copy a graphic area
GCOPY X, y' dxl dy
(*** NOT YET IMPLEMENTED *%*]

-GENLOCK - Enable or disable video sync hode & colors

GENLCCK ON [, color#]...
GENLOCK OFF {,color#,R,G,B}...

To enable video sync mode and specify which colors are affected, use
the GENLOCK ON command, and list the palette color indices (0-255)

N

which will display external video.

To disable video sync mode and restore the associated palette colors,
use the GENLOCK OFF command, and list the color index and its RGB
values to restore them (see the SET PALETTE command for details).
Also see the PALETTE RESTORE command.

GET - Get input data from the keyboard
GET variable_list

The GET statement is a way to get data from the keyboard

one character at a time. When the GET is executed, the
character that was typed is received. If no character was
typed, then a naull (empty) character is returned, and the
preogram continues without waiting for a key. There is ne need
te hit the RETURN key, and in fact the RETURN key can be
received with a GET. The word GET is followed by a wvariable
name, wusually a string variable. If a numeric were used and
any key other than a number was hit, the program would stop
with an error message. The GET statement may also be put into
a loop, checking for an empty result, that waits for a key to
be struck to continue. The GETKEY statement could also be used
in this case. This statement can only be executed within a

program,
-10 DO: GET A$: LOOP UNTIL A$ ="A"

This line waits for the A key to be pPressed to continue.

GETKEY ~ Get input character from keyboard {(wait for key)
GETKEY variable list |

Tge GETKEY statement is very similar to the GET statement.
Unlike the GET statement, GETKEY waits for the user to type a
character on the keyboard. This lets it be used easily to wait
for a single character to be typed. This statement can only be
executed within a program. S

10 GETKEY AS$

This line waits for a key to be struck. Typing any key will
continue the program. o

]

GET# - Get input data from a channel (file) _

GET# logical_channel_number, variable list
Used with a previocusly OPENed device or file to input one
character at a time. Otherwise, it works like the GET
statement. This statement can only executed within a program.

10 GET#1,AS

G064 - Exit C64DX mode and switch to C64 mode
G064 _
This statement switchéS'ffom C64DX mode to C64 mode. The question

ARE YOU SURE?’ (in direct mode only) is posted for the user to
respond to. If Y and return is typed then the currently loaded

Program is lost and control is given to C64 mode. This. statement
can be used in direct mode or within a program.

GOSUB - Call a BASIC subroutine
GOSUB line .

This statement is like the GOTO statement, except that the

computer remembers from where it came. When a line with a RETURN
statement is encountered, the program jumps back to the statement
immediately following the GOSUB. The target of a GOSUB statement

is called a subroutine. A subroutine is useful if there is a section
of the program that can be used by several different parts of the
program,. Instead of duplicating the section over and over, it can be
set up as a subroutine and called with a GOSUB statement from
different parts of the program. This also make.the main part of your
program much more readable. See alsc the RETURN statement. -

Variables are shared with the main program and all subroutines. You
can pass information to, and get information back from, subroutines
by using variables as messengers.

GOSUB statements can be nested. That is, one subroutine can call
another subroutine, and the computer automatically keeps track of

all the calls. It’s important not to jump intoc or out of subroutines,
since this can confuse the computer. If too many GOSUBs are nested
(usually cause by jumping out of them) an ’QUT OF MEMORY’ error is
reported because the computer ran out of room to keep track of all
the calls.

10 DIR : GOSUB 100 show directory,.- check status
20 GOSUB 2Q0 - - print gap

30 LIST "PROGRAM™: GOSUB 100 show listing, check status
40 GOSUB 200 2 print gap

50 ete...

90 END :

99: : :

100 REM SUEBROUTINE TC CHECK DISK STATUS

110 IF DS THEN GOSUB 200: PRINT "DISK ERROR: ";DS$S
120 RETURN -

199; : ‘

200 REM SUBROUTIRE TO PRINT A SPACER ON THE SCREEN
210 PRINT

220 FORI=1TO39:PRINT"-";:NEXT

230 PRINT

240 RETURN . : s

GOTO - Transfer program execution to specified line number

GOTO line number
GO TO 1line number

After a GOTO statement is executed, the next 1line to be
executed will be the one with the line number following the
word GOTO. When used in direct mode, GOTO line number allows
starting of execution of the program at the given line number
without clearing the variables.

10 PRINT*"COMMODORE"
20 GOTO 10 '

The GOTO in line 20 makes line 10 repeat continuously until STOP
is pressed. ' : .

GRAPHIC - select graphic mode

GRAPHIC CLR
GRAPHIC command#, {,args]

Basically this is a modified C64-type SYS command, minus the address.
In the C64DX system, this will represent the ML interface, not the
~ BASIC 10.0 interface which is implemented in the development system.

(*** THIS COMMAND IS SUBJECT TO CHANGE *xx]

GRAPHIC CLR initializes {warm-starts) the BASIC graphic-s&stem. It
clears any existing graphic modes, screens, etc. and allows a program ..
to. commence graphic operations from scratch.

HEADER - Format a diskette
HEADER "diskname™ [,TIid}] [,Ddrive} [<ON},>Udevice]

The HEADER command prepares a new diskette for use, sometimes

called FORMATing a diskette. There are two types of "newing” a
diskette- a long form and a quick (or short) form. You must use the
long form when preparing a new diskette for its first use. Thereafter
you can use the quick form,

WARNING: Formatting a diskette (long or short) will destroy all
existing data on the diskette! 1In direct mode, you are asked to
confirm what you are doing with ’'ARE YQU SURE?’. Type 'Y’ and press
return to proceed, or TYPE ANY OTHER CHARACTER AND PRESS RETURN TO
CANCEL the command. In program mode there is no confirmation prompt.

The long HEADER form requires a diskname and an ID. The diskette will
be completely {re)sectored, zeros written to all blocks, and a new
S%Ftem track (directory, BAM, etc.) will be created.

HEADER "newdisk",I01 prepares a new diskette

The short HEADER form is performed when the ID option is omitted. The
diskette is assumed to have been previously formatted, and only a new
system track (directory, BAM, etc.) is installed. This is roughly
equivalent to deleteing all the files, but much quicker.

HEADER "mzkelikenew" re-news an working diskette

The diskname is limited to 16 characters and the ID string to two
characters. The same rules apply for the diskname as for a filename.
Some Disk Systems use the ID string to tell if you have swapped a
diskette in a drive, so it’s recommended that the ID string be unique
for each of your diskettes. Some more examples:

HEADER "QUICK".

HEADER "MYDISK", 123

HEADER "RECS", I"FB", U9
HEADER - (FILES), I(ID$), U(UNIT)

HELP - Show the BASIC line that cause the last error

The HELP command is used after an error has been reported

in a program. When HELP is typed, the line where the error occurred
listed, with the portion containing the error highlighted. Print
ERRS (ER) for the error message, and print EN or EL for the error
number and error line, respectively. HELP can be used in direct mode
or in program mede. Note that, in the case of many I/0 errors, there

is no associated BASIC error. Check ST or DS$ errors in these cases.

HEX$ - Hexadecimal value function
REXS (decimal_expression)

This function returns a 4-character string that represents the
hexadecimal value of the numeric decimal expression. The expression
must be in the range (0-65535, $0000-$FFFF hex) or an ’ILLEGATL
QUANTITY’ error is reported.

PRINT HEX$(10) The string "000A™ is printed.
PRINT RIGHTS (HEX$(10),2) .The string "O0A"™ is printed.

HIGHLIGHT — Set the text highlight color of the display
' HIGHLIGHT color

Sets the highlight color to the given color index. The color value
must be in the range (0-15). See the Color Table. - COLOR must be ON
(see the COLOR command). The highlight color is used in HELP messages
and FIND/CHANGE strings. :

IF/THEN/GOTO/ELSE - Conditional program execution
IF expression <GOTQ line | THEN thén_clause> [:ELSE else_clause]

- IF...THEN lets the computer analyze a .BASIC expression
preceded by IF and take one of two possible courses of action.
If the expressjon is tru€, “the statement following THEN is
executed, This expression cin be any BASIC statement. If the
expression is false, the proytam goes directly to the next
line, wunless an ELSE clause is present. The ELSE clause, if
present, quust be in the same line as the IF-THEN part. When an
ELSE clause is present, it is executed when the THEN clause
isn’t executed. In other words, the ELSE clause executes when
the expression is FALSE. See BEGIN/BEND to spread the IF statement
out over several lines. BAn ELSE statement is matched to the
closest THEN statement in the case of nested IF/THEN statements.

The expression being evaluated may be a variable or formula, in
which case it is considered true if nonzero, and false if zero.
Usually expressions involve relational operators =, <ﬁ >, <=, >=, <>,

50 IF X>0 THEN PRINT "X>Q": ELSE PRINT "X<=0"

If X is greater than 0, the THEN clause is executed, and the ELSE

clause isn’t. If X is less than or equal to 0, the ELSE clause is
executed and the THEN clause isn’t..

INPUT - Get input from the keyboard
[LINE] INPUT ["prompt"<,|:>] variable_list

The INPUT statement pauses the BASIC program, prints the prompt

string if present, prints a gquestion mark and a space, and waits for
data to be typed by the user, terminated by a return character. If
the prompt string ends with a comma instead of a semicolon, a question
mark and space is not printed. : ‘

Input is gathered and assigned to variables in the variable list.
The type of variable must match the type of input typed or a ‘TYPE

MISMATCH’ error is reported. Separate data items typed .by the user
must be separated with commas. String data with imbedded spaces or
commas must be surrounded with quotes. If insufficent data to
satisfy the wvariable-list is typed, two question marks are displayed
by the computer to prompt for additional data to be input. If the
computer does not understand the input (such as the user typing
cursor up or down keys) the computer responds with the message

"REDO FROM START?’ and waits for acceptable data to be entered.
Input is limited to 160 characters (two screen lines in 80-column
mode), which is the size of the input buffer. ’

The INPUT statement can only be executed from within a program.

LINE INPUT allows the program to input a string which includes any

PETSCII character (including colons, commas, imbedded spaces, etc.)

up to but not including a null or return character. There should be
only one string-type variable name in the wvariable list in this case,

. but if there are more the computer prompts as usual with two question
marks for more data to assign to the additional wvariables.

10 INPUT "WHAT’S YOUR FIRST NAME AND AGE"; NAS,A
20 PRINT "YOUR NAME IS “;NA$;" AND YOU ARE";A;" YEARS OLD"

The above INPUT is the traditional BASIC form.

10 LINE INPUT "WHAT’S YOUR ADDRESS"; ADS
20 PRINT "YOUR ADDRESS IS: ";ADS

The above INPUT allows an entire line of data to be assigned to a
string variable, including commas and other common punctuation marks.

10 INPUT "ENTER YOUR NAME HERE: ", NAS
The above INPUT suppresses the traditional ’? prompt by using a comma
instead of a semicolon after the prompt string. 7To suppress the ‘7?7
without a prompt string, make the prompt string null,
e

INPUT# - Input data from an I/0 channel (file)
[LINE] INPUT#logical_ channel_number, variable list

The INPUT# command works like the INPUT command, except no prompt
string is allowed and input is gathered from a previously OPENed
channel or file. This command can only be used in a program.

The logical_channel number is the number assigned to the device (file)
in an OPEN (or DOPEN)} statement. Items in the variable list must
agree with the type of data input, or a FILE DATA ERROR’ will result.

On the C64DX, an End Qf File (EOF) condition or bad I/0 status will
terminate input, as if a return character was received. It’s good
practice to examine the I/0 status byte (and the DS disk status for
file I/0) after every I/0 instruction to check for problems or errors.

10 DOPEN#1,"FILE" This program will
20 C=0 : count the number of
30 DO: LINEINPUT#1,AS: C=C+1l: LOOP UNTIL ST lines in FILE

40 DCLOSE#1 _

5¢ PRINT"FILE CONTAINS";C;"™ LINES."™

INSTR - Get the location of one string inside another string

INSTR (string_l, string 2 {,starting_position])

This function searches for the first occurrence of string 2 in
. 8tring 1 and returns its location. A value of zero (0) is returned
if no match is found, if either string is null (empty)}, or if ‘

string 2 is longer than string 1.

If the starting position is given, the search begins at that location,
otherwise the search begins at the first character of string 1,

The strings can be literals, variables, or string expressions.

X = INSTR(™123456™,"4") Result is X=4
X = INSTR("123456", "X™) Result is X=0
X = INSTR("123123%,"2m™) , Result is X=2
X = INSTR(™123123%","2",3) Result is X=5

INT - Greatest integer function
INT {(expression)

This function returns the greatest integer less than or equal to
the numeric expression.

X = INT{ .123) Result is X= 0
X = INT(-.123) Result is ¥= -1
X = INT(123.45%6) Result is X= 123
X = INT(~123.456) Result is X=-124

JOY - Joystick function
JOY (port)

This function returns the sta;e of a joystick controller in the
specified port.

When port=l returns position of joystick 1
When port=2 returns position of joystick 2

The wvalue returned is encoded as follows:

Fire = 128 + 1l
8 2
7 0 3
¥
6 4
5

A value of zero (0) means that the joystick is not being manipulated.
A value of 128 or more means that the fire button is being pressed.
The possible vales returned are: :

-0 No activity 128 fire
1 up 129 fire + up
2 up + right 130 fire + up + right
3 right 131 fire + right
4 " right + down 132 fire + right + down
S down 133 fire + down
6 down + left 134 fire + down + left
7 left 135 fire + left _
8 left + up 136 fire + left + up

e

T

EKEY - Enable, disable, display, or define function keys

KEY ON
KEY OFF
KEY [key#, string]

There are 14 function keys available on the C64DX (seven unshifted
and seven shifted). The user can assign a string consisting of
BASIC commands, control codes, escape functions, or a combination
of each to function key. The data assigned to a key is typed out
when that key is pressed, just as if the characters were typed

one by one on the keyboard. The user can enable ("turn on") or
disable ("turn off") the function keys. When they are disabled,
pressing a function key return that key’s normal character code
instead of the string assigned to it. This includes the HELP and
{shifted)RUN keys. It is also possible to redefine the HELP and
(shifted)RUN keys, as function keys 15 and 16, respectively. The
system has default assignments fer all function keys. KEY with no
parameters displays a listing of the current assignments for all the
function keys. ' ' : .

The maximum length for all the definitions togethef is 240 characters.
If an assignment would be too big to f£it, an ‘OUT OF MEMORY’ error
is reported and the assignment is not made. '

KEY 2, "DIR U9"+CHRS (13)

This causes the computer to display the directory from disk

unit #9 when function key 2 is pressed. This is equivalent to
typing ‘DIR U%' and pressing the RETURN key directly. The CHRS (13)
is the character for RETURN. Other often used control codes are
CHRS (141) for ’shifted RETURN’, CHRS(27) for ’'ESCape’, and CHRS(34)
to incorporate a double guote into a KEY string. :

KEY 2, *DIR"+CHRS (34)+"*=P"+CHRS (34)+CHRS (13)

Tis is equivalent to typing DIR"*=P" and pressing return

at the keyboard. Note the way quotes can be incorporated into an
assignment. When function key 2 is pressed, a directory of all
program files on the default system disk will be displayed.

KEY OFF
This turns ¢ff function key strings. Pressing a function
key now would return the character codes associated with F-keys as
on the VIC~20 and C64 computers., KEY ON would re-enable function

key strings, unchanged from their previous assignments. To restore
the system default assignments, reset the computer..

LEFT$ — Get the leftmost characters of a string

LEFT$ (string;count)
This function returns a string containing the leftmost ‘count’ number
of characters of the string expression., Count is an numeric
expression in the range (0-255). If count is greater than the length
of the string, the entire string will be returned. If count is zero,
a null (empty) string will be returned.

AS = LEFT${"123ABC",3) Result is A$="123"

LEN - Get the length of a string

LEN (string)

This function returns the number of characters in a string expression.
Nonprinting characters and blanks are counted.

A = LEN{"ARC") Result is A=3

LET - Assign a value to a variable
{LET) variable = expression

The LET command is optional, since the equal sign by itself is
understood by the computer to mean assignment. Multiple assignments
on LET statements are not allowed.

10 LET A=1: LET B=A+l: LET CS=" THREE"
20 : D=1: E=D+1: F5=" THREE"
30 PRINT A:;B:CS
40 PRINT D:E;F$

Qutput: 1 2 THREE
1 2 THREE

LINE - Draw a line on a graphic screen
LINE x0, y0, x1, vyl

LINE draws a line on the currently defined graphic scréen_with
the currently defined draw modes. The line is draw from (x0,v0)
to (x1,¥yl).

- -

LIST - List a BASIC program i¥om memory or disk
LIST [startline] [- [endline]]
LIST "filename” [,Ddrivé] <, |ON>Udevice]

LIST is used to view part or all of a BASIC program in memory or all
of a BASIC program on disk (without affectlng the program that is
currently in memory).

The display can be slowed down by holding down the C= key or it .
can be paused by pressing the NO-SCROLL key or CONTROL-§. A listing
that is paused can be restarted by pressing NO-SCROLL agaln or by
pressing CONTROL-Q. The display can be stopped by pressing STOP.

If the word LIST is followed by a line number, the computer shows
only that line number. If LIST is typed with two numbers separated
by a dash, the computer shows all lines from the first to the second
line number. If LIST is typed fecllowed by a number and just a dash,
it shows all lines from that number to the end of the program.
And if LIST is typed, a dash, and then a number, all lines from the
beginning of the program to that line number are LISTed, By using
these variations, any portion of a program can be examined or -easily
brought to the screen for modification. LIST can be used in direct
mode or in a BASIC program.

LIST Shows entire program.
LIST 100- Shows from line 100 until the end of the program.
LIST 10 Shows only line 10,

LIST -100 Shows lines from the beginning until line 100.
LIST 10-200 Shows lines from 10 to 200, inclusive.

e

LOAD - Load a program oi data into memory from disk
LOAD "filename" [,device number [,relocate_flag]]

This command loads a file into the computer’s memory. The filename
must be given, and pattern matching may be used. In the dase of dual
drive systems, the drive number must be part of the filename. If a -
device number is given, the file is sought on that unit, which must be
a disk drive. If a device number is not given, the default system
drive is used. See also DLOAD and RUN commands.

The relocate_£flag is used to LOAD binary files. 1If the relocate _flag
is present and non-zero, the file will be copied into memory starting .
at the address stored on disk when the file was SAVEd. See BLOAD.

Do not use the relocate flag to load BASIC programs; they will be
automatically relocated to the start of the BASIC program area and
relinked. -

To compare a program in memory to a disk file, use the VERIFY or
- DVERIFY command. To compare a binary file, use BVERIFY.

See the discussion at DLOAD regarding CHAINING programs.

LOAD "PROG" Loads BASIC program PROG from the system drive.
LOAD FILES,DRV Loads a program whose name is in the variable
called F$ from the unit whose number is in DRV.
LOAD "Q:PROG",8 Loads BASIC preogram PROG from unit 8, drive-0,.
LOAD "BIN",8,1 Loads a binary file into memory.
LOCATE - {*** NOT }ET IMPLEMENTED ***}

10G - Get'the'natural logarithm of a number
? LOG (number)
This function returns the natural logarithm of a numeric expression.

A natural log is a log to the base e (2.71828183). See the EXP
function. To convert to log base 10, divide by LOG(10).

A = TL.OG(123) ' ' Result is A=4.81218436
A = LOG(123) / LOG(10) Result is A=2.08990511

LOOP - See DO/LOOP/WHILE/UNTIL/EXIT . s

LPEN - Get the position of a lightpen
PEN (position)

This function returns the current positien of a lightpen on the screen,
When position=0, the X position is returned, and when position=1 the

Y position is returned. Note that lightpen coordinates, like sprite
coordinates, are offset from the normal graphic¢ coordinate map. This’
means you have to calculate where the lightpen is with respect to the
screen display. The electronics of each lightpen also introduces a
skew which must be factored into your calculations.

The X resclution is limited to every 2 pixels, and will always be. an
even number in the approximate range (60~320). The Y position is in

the approximate range (50-250}. If either the X or the Y position is
" zero, the lightpen is off-screen.

Note that a lightpen COLLISION need not be enabled to use LPEN, A
bright background color, such as white, is usually required to
stimulate the light pen. Lightpens only work in game port 1.

10 TRAP 40 We’re done if STOP key

15 BACKGROUND 1 Make backgound color white
16 FOREGROUND O . Make text color black

20 COLLISION 3,100 Enable lightpen interrupt
30 DO:LOOP : Hang here until done

40 END : Done

100 coLLISION 3 ' ' Got one, don’t want more
110 PRINT LPEN(Q),LPEN(1) Display lightpen position
120 COLLISION 3,100 Re-enable interrupt

130 RETURN . s ,

MID$ - Substring function
MID$ (string, position ([, length])

This function can appear on the left or the right side of an

-assignment statement:

Case 1: string_var = MID$ {string_expression, position [, length])

This form returns a piece of another string. The function returns a
string of the specified length taken from the string_expression
beginning at the indicated position. The position must be in the

range (1-255}, one (1) being the first character. The length can be
any number in the range (0-255), or it can be omitted. If the position
specified is greater than the number of characters in the :
string expression, a null (empty)} 'string is returned. 1If the length is
greater than the number of Tharacters from the given position to the
end of the string_expression,_or the lenght is omitted, then all the
rightmost characters beginniu§ at the position are returned.

AS = MIDS ("TICTACTOE",4,3) Result is AS="TAC" .

AS = MIDS$ ("TICTACTOE"™,4) Result is AS$="TACTOE"

AS = MIDS ("TICTACTOE",10,1) Result is A$="" (empty)
Case 2: MID$ (string var, position [,length]) = string expression

This form replaces a portion of the string contained in string_var
with data from another string_expression, beginning at the specified

' position in the string var. If the length is given only, that many

characters from the string_expression are taken, otherwise all the
characters in the string_expression will replace characters in the
string var beginning at the position specified. The there are too
many characters to fit in the string var, an ’ILLEGAL QUANTITY’ error
is reported. If the length given is zero, no characters will be
replaced..-

AS="TICTACTOE": MIDS$ (AS,4,3)="123456" Result is AS="TICL23TOE"

A$="TICTACTOE": MID$(AS,4) ="123456" Result is AS="TIC123454"

AS="TICTACTOE": MID$(A3,5) ="123456" Result is ’ILLEGAL QUANTITY’
MONITOR -~ Enter the built-in machine language monitor

SEE SECTION ?.7 ON THE C64DX MONITOR.

MOUSE -~ Enable or disable the mouse driver

MOUSE ON [{[,porxt [,sprite [,position]]]

MOUSE OFF

port = joyport 1, 2, or either (both) (1-3)
sprite = gprite pointex (0=-7)
~poesition = initial pointer leocation (x,v¥)

normal, relative, or angluar coordinate

defaults to sprite 0, port 2
2222 add min/max x/y positions

[**x* THIS COMMAND IS SUBJECT TO CHANGE ***}

Mouse ON enables the built-in mouse driver. The user must load
a pointer into the proper sprite area ($600-37FF). The driver
assumes the "hot peint" is the top left corner of the sprite,
and does not allow this point to leave the screen.

Mouse OFF will turn off the driver and the curréntly associated
sprite.

Use the RMOUSE function to get the current pointer position and
button status. See the sample program at RMCUSE.

MOVSPR -~ Position sprite or set sprite in motion
' MOVSPR sprite <,x,y>

Use the SPRITE command to turn on a sprite, and MOVSPR to position
it. Sprites are numbered 0-7. The sprite’s position can be specified
using one of the following coordinate types:

[+/=-1x, [+/-]y
. x#y
X’y

“[felative] position
angle and speed
distance and angle

nnu

AXles are specified as 0-360 degrees, with 0 being straight up.
Speeds are specified as a number of pixels per frame, 0-255. Sprites
are moved through each pixel so that collisions are accurately detected.

NEW - Delete program in memory and clear all variables

b

NEW [RESTORE]

This command erases the entire program in memory and clears all
variables and open channels {(but it does NOT properly close open
disk write files~ used DCLOSE or DCLEAR beforehand}. NEW also .
resets the runtime stack pointer (clears GOSUB & FOR/NEXT stacks),
the DATA pointer, and the PRINTUSING characters,

The BASIC program in memory is lost unless it was previously SAVEd

to disk. If you have not entered or loaded any BASIC programs since
typing NEW, the RESTORE option will recover the BASIC program in
memory. But if the BASIC environment has been changed in any way, the
program may not be restored correctly. If BASIC can tell something’s
wrong, it will report ‘PROGRAM MANGLED’.

NEW can be used in direct (edit) mode or in a program. When it’s
encountered in a program, the program terminates.

NEXT - See FOR/NEXT/STEP and RESUME

NOT - Get the complement of a number

OPEN

NOT (expression)

The NOT function returns the complement of an integer in the range
(-32768 to 32767). The function operates on the binary value of signed
16-bit integers. Aan expression outside of this range will cause an
fILLEGAL QUANTITY’ error. _ :)

X
X

NOT (5) Result is X=-¢
NOT (-6) ﬁ Result is Z=5

no

NOT is often used in logical comparisons (such as an IF. statement) to
invert the result, since -1 (true} is the result of NOT(0) (false), and.
0 (false) is the result of NOT(-1) (true).

X = NOT("ABC"="ABC"™) AND ("DEF"="DEF") Result is X= 0 (false)
X = NOT("ABC"="ABC") AND ("DEF"="XYZ"™) Result is X=-1 (true)
OFF - Subcommand used with various BASIC commands .

ON - Computed GOTO/GOSUB
ON expression <GOTOQ|GOSUB> line number list

This is a variation of the IF<expression>GOTO statement that branches
to one of several line numbers based upon the value of an expression.
The integer valuve of the evaluated expression determines which line
number in the line number_list gets control.

If the expression evaluates to one, the first line number jin the list
gets control, if it’s two tfie second line number gets control, and so
on. Fractional parts of the yalue are truncated (for example, 2.9
becomes 2). If the value is %ero or greater than the number of items
in the list the computer takes none of the branches and continues on
with the next statement. If the value is negative, an ’'ILLEGAL
QUANTITY ERROR’ is reported. '

The ON/GOSUB statement must call the first line number of a subroutine,
and the subroutine must end with a RETURN statement. After executing

the subroutine, control is returned to the statement following the
ON/GOSUB statement. S

10 INPUT"ENTER A NUMBER 1-3: ",X ‘
20 ON X GOTO 100,200, 300 :

30 PRINT"TOO LOW QR TOO HIGH": RUN
100 PRINT"ONE™: RUN
200 PRINT"TWO": RUN.
300 PRINT"THREE": RUN

OPEN - Open a chamnel to a device or disk file
logical_chnl_pum, device number [,secondary_adr [,<filespec|command>]]

Before a program can access a device or a file, an I/0 channel must
be opened to it to communicate through. When something is opened,
yYou associate a logical channel number with it, and it is with this
number that all other I70 stateWents access the device or file. The
OPEN command can be used in direct {edit) mode or in a program.

The channel number, device number, and optional secoﬁdary address
are integers from 0-255. Refer to the device’s manual for more
information about what (if any) secondary addresses it uses.

channel: 0-127 return = output return character only
128-255 return = output return + linefeed

device: ' 0 Keyboard
1 Default system drive

whatever its number is (see SET DEF)
2 RS232
3 Screen
4-7 Serial bus

{usually reserved for prlnters}

8-31 Serial bus

{usually reserved for dlsk drlves)

The filespec is the file name in the case of disk files (refer to
your DOS manual for details). Typically, the filename ia a string
hav;ng the the following form

[[RI$])drive:] filename [type]l [,mode}

An example would be 0:MYFILE, SEQ, READ to open the sequential
file MYFILE for reading on drive 0. bDisk drives usually support

some kind of filename pattern matching. Most disk drives support the
following file types and modes (cam be abbreviated to first character):

types: 3’ equential
_ *pP’rogram
'R'elative
U’ ser

modes: 'R’ ead
"W rite
fL' ength (for relatlve type files)

Some channels or devices accept a command string instead of a filename
when thay are opened. An example would be the disk command channel or
the RS232 open/setup command. Refer to the device’s documentation.

k.
OPEN 1,8,15,"1" .Open CBM disk command channel & send
, it the 'Ifnitialize command.
OPEN 4,4,7 Open- CBM printer channel in upper/lower

case mode,
OPEN 128,2,2,CHRS$(14) Open a 9600 8N1 RS232 channel and
: translate CR into CRLF on output.

See also DOPEN, DCLOSE, CLOSE, CMD, GET#, INPUT#, and PRINT# statements
and I/0 status variables ST, DS, and DSS$.

]

OR - Boolean operator
expression OR expression

The OR operator returns a numeric value equal to the logical OR

of two numeric expressions, operating on the binary value of signed
16-bit integers in the range (-32768 to 32767). Numbers outside this
range result in an ‘ILLEGAL QUANTITY’ error.

= 4 OR 8 Result is X=12
In the case of ‘logical comparisons, the numeric value of a true

situation is -1 (equivalent to 65535 or SFFFF hex) and the numeric
value of a false situation is zero. ‘

X = ("ABC"="ABC") OR ("DEF"="DEF") Result is X=-1 (true)
X = ("ABC"="ABC") OR ("DEF"="XYZ") Result is X=-1 (true)
X = ("ABC"="XY2") OR ("DEF"="XYZ") Result is X= 0 (false)

PAINT - Fill a graphics area with color
PAINT x,y, mode [,color]
X, ¥ coordinate to begin fill at
mode 0: £fill area to edge = color
1: £fill area to edge=same as color at XY
PAINT fills an enclosed graphic area starting at the given coordinate
with the color of the currently defined PEN. The mode parameter
ideéntifies the region to be filled.

[*** THIS COMMAND IS NOT YET IMPLEMENTED **%*]

PALETTE - Define a color

PALETTE [screen#|COLOR], color#, red, green, blue
PALETTE RESTORE

screen# 0-1

color# 0-255
red 0-15
green 0-15
blue 0-15

The PALETTE cémmand can be used to define a coler for a logical
graphic screen, set an absolute color, or restore the C64DX VIC-III
default coloxs. PALETTE can be used in direct mode or in a program.

The VIC-III pre-defines the first.16 colors to the usual C64-type
colors, but you can change thgm with the PALETTE COLOR command or
restore them all with the PALETTE RESTORE command.

See the sample program aftertthe SCREEN command.

PASTE - Put a CUT graphic area on the screen
PASTE x,y

[*** NOT YET IMPLEMENTED **¥]

PEEK - Function returning the contents of a memory 1oca£ion
PEEK (address) '

This function returns the contents of a memory location. The address
must be an integer in the range of 0-65535 ($SO-SFFFF) and the value
returned will be an integer in the range of 0-255 ($0-8FF) .

Use the BANK command to specify which 64K memory bank the address

is in. Note that a BANK number greater than 127 (i.e., a bank number
with the most significant bit set) must be used to address an I/0
location, such as the VIC chip or color memory. Refer to the system
memory map for details. PEEK uses the DMA device to access memory.

Use the POKE command to change the contents of a memory logation. ‘
BANK 0: X = PEEK (208) Reads the keyboard buffer index. If

it’s empty, X will be zero, otherwise X
will be the number of characters in it.

i

PEN - Specify a pen color for drawing on graphic screen
PEN pen, color

pen 0-2
color p-255

Before you can draw anything on 'a graphic screen, you have to tell
BASIC what color your PENs are. You should first define what your :
colors are using the PALETTE command, then use PEN to associate those
colors with a PEN. Whatever graphic commands you use after a PEN
command will use the PEN you specified. |

PEN 0,1 Put color 1 "ink™ into draw pen 0O

See the sample program after the SCREEN command..
PIC - Graphic picture subcommand

PLAY - Play a musical string
PLAY "{Vn,On,Tn,Un,Xn, elements}”
(*** WILL CHANGE TO ADD 2nd SID SUPPORT ***]
The PLAY command lets you select a voice, octave, instrument, voluhe,

filter, and musical notes. All these parameters are packed into a
string (spaces are allowed for readablilty).

On = Cctave {n=0-6}

Tn = Tune envelope # (n=0-9)
0= piano {defaults)
1= accordion

2 2= calliope .
3= drum
4= flute
5= guitar
- 6= harpsichord
7= organ
8= trumpet

9= xylophone

Un = Volume {(n=0-9)

Vn = Voice (n=1-3)

Xn = filter on (n=1), off (n=0) .
Elements:

A,B,C,D,E,F,G ... Notes, may be preceeded by:

tetrsssensssess Sharp
$ vt ereieiiissen... Flat
+ sssresssasas ++se. Dotted
Wi ittt +... Whole note
< S Half note
10 Quarter note
I it i e .. Eighth note
S (oL csevsses.. Sixteenth note
R iiievenianssiaesss Rest :
- . Wait for all voices playing to end

(a measure)

Once the music string starts PLAYing, the computer will continue with
the next statement. The music will continue to play automatically:
Using the ’'M’easure command will cause the computer to wait until the
music has up to that point has been played out. '

Use the TEMPO command to alter the tempo {speed) of PLAY. Note that
the VOLume command can change a PLAY string’s volume setting,

POINTER - Get the address of a variable descriptor
POINTER (variable name)

This function returns the address of an entry in the variable table.
If the value returned is zero, the variable is currently undefined.
The variable table is normally in the second RAM bank (BANK 1). See
the section on variable storage for details. | :

Note that, while the location of a string descriptor will not change,
the location of the actual string in memory changes all the time.
Also, when working with an array name you must specify a particular
element, to which POINTER will return a pointer to that element’s
descriptor and not to the array descriptor.

10 A$="FRED" Define AS$
20 DESC=POINTER (AS3) Lookup A$ in variable table
30 BANK1l: PRINT PEEK (DESC) Displays the length of AS

POKE - Write a byte to memory location
POKE address, byte {,byte ...]

POKE is used to write one or more bytes into one or more memory
locations. The address must be an integer in the range of 0-65535
(S0-SFFEFF) and the value to be written must be an integer in the
range of 0-235 ($0-SFF). If more than one byte is given, it will
be written into successive megory locations,

Use the BANK command to specify which 64K memory bank the address

is in. Note that a BANK number greater than 127 {(i.e., a bank number
with the most significant bit set) must be used to address an I/0
location, such as the VIC chip or color memory. Refer to the system
memory map for details. Alsc note that, unlike previous CBM computers,
POKEs to a ROM location will not "bleed through" into a corresponding
RAM location. POKE uses the DMA device to access memory.

Use the PEEK function to read a byte from a memory location.
Because this command directly accesses system memory, extreme care
should be taken in its use. Altering the wrong memory }ocation can
crash the computer (press the reset button to reboot) .

BANK 0Q: POKE 208,0 Resets location 208 ($000D0), clearing
the keyboard buffer.

BANK 128: POKE DEC("D023"),1,2,3 Sets the VIC extended background
¢olors to 1, 2, and 3 respectively
POLYGON - Draw a regqular n-sided figure on a graphic screen

POLYGON x,y, xradius,yradius, [solid], angle, drawsides, sides, subtend

X,y = center of polygon

X, yradius = radii of polygon

solid .= solid flag . {0-1)

angle = starting angle {0-360)

drawsides = # of sides to draw (3-127)

sides = # sides of polygon {drawsides<=sides)

subtend = subtend flag {0-1)

POS - Get the column number of the cursor

POS (0)

This function returns the current text column the cursor is in, with
respect to the currently defined window (see RWINDOW)-. It’s usually.
used to format text printed to the screen. The argument (0) is

not used for anything. POS will not work as expected if text cutput
is redirected to a disk file or the printer. '

10 MAXCOL = RWINDOW (1)

20 FOR ADR=DEC("600%) TO DEC ("7FF")
30 PRINT HEXS (PEEK(ADR)) ;" ":

40 IF POS(0) > (MAXCOL-5) THEN PRINT
50 NEXT

This example illustrates one way to format output to the screen,
keeping the last item on a line from being split between two lines,
regardless of the window size (as long as the window size is at least
4 characters wide). It dumps the data for the first sprite in hex.
POT - Paddle function _

POT (paddle)

This function returns the state of a game paddle (POTentiometer)
controller in one of the two game ports.

paddle=1l Position of paddle #I (port 1, paddle "A")
paddle=2 Positiom of paddle #2 (port 1, paddle "B")
paddle=3 Position of paddle #3 (port 2, paddle "A")

paddle=4 Position of paddle #4 (port 2, paddle "B")

2
The value returned by POT ranges from 0 to 255. Any value greater
than 255 means that the file button is also pressed. Paddles axe
read "backwards" from normal things like volume knobs or faucets.
A value of 255 means the paddle has been turned counterclockwise

as far as it will go ("off"), and a value of 0 means the paddle has
been turned clockwise as far as it will go.-{"on"},

Note that some paddles are "noisy" and their output must be averaged
or "damped" to prevent whatever they are controlling from jittering.

10 SPRITE 1,1 ' Turn on a sprite

20 DO Begin a loop

30 X=POT (3} Read paddle "A" in port 2
40 MOVSPR 1,300-(X AND 254),200 Move the sprite

50 LOOP UNTIL X>255 Loop until button pressed
60 SPRITE 1,0 - Turn off sprite

This sample program turns on a sprite and lets vou move it horizontally
with a paddle. If you press the paddle’s fire butten, it turns off the
sprite and the program ends. The calculations in line 40 do several)
things all at once- they mask the fire button and "damp” the output to
reduce jitter by masking the least significant bit (the X AND 254 part)

- and invert the output so that turning the paddle to the right makes the

sprite go right (subtracting result from 300).

PRINT — Display data on text screen

PRINT {expression_list] [<,|;>}

PRINT will evaluate each item in the expression_list and pass the
results to the system screen editor to display on the screen. If

a2 screen window is defined, the output will be confined to the window.
PRINT can be used to send control codes and escape sequences to the
screen editor to do such things as set windows, change TAB stops,

change text colors or set reverse field,

or choose cursor styles.

See the section on Editor modes for details.

PRINT can be followed'byrany of the following:

Numeric or string expressions
Variable names

Functions

Punctuation marks

Nothing

12, "HELLO", 1+1, "$"+STR$(I)
A, B, A$; XS .
ABS (33), HEXS (160)

r r

Numeric values are always followed by a space. Positive numbers are
preceeded by a space, and negative numbers are preceeded by a minus
sign (’-’). Scientific notation is used when a number is less than
0.01 or greater than or equal to 9999999959,2.

A semicolon (':’) or space between list items causes the next item
to be printed immediately following the previous item. A comma

{(*.’) causes the next item to be

printed at the next comma stop

(similar to TAB stops, but every 10 spaces}). These rules apply to .
the next print statement if the expression_list ends with either

& semicolon or a comma, otherwise a return is printed. Note that
floating point variable names should not be separated from the next
variable name with a space, and constants should not be preceeded

or followed by a space.

For formatted PRINT output, see the PRINT USING command.

PRINT "HELLO" ¥
'AS="THERE": PRINT "HELLO ";AS
A=4:B=2: PRINT A+B

J=41: PRINT J;: PRINT J-1

C=A+B:D=B-A: PRINT A:B;C;D
=A+B:D=B-A: PRINT A,R,C,D

A=1:B=2:AB=3: PRINT A B
PRINT 1 2 3, 1 2 3 +1

PRINT 0.009, 0.01
PRINT 999999999; 999999999.2

BELLO
HELLO THERE
6 _
41 40
4 .2 6 -2
4 2 6 -2
3 .
123 124

1

9E~-03 .01
999999999 1E+09

The CMD command can be used to redirect PRINT output to a device or
file. Also see the POS, SPC, TAB functions, CHAR and PRINT USING.

PRINT} —~ Send data to an I/0 channel (file)

PRINT#logical_channel number [,expression_list] {<,{:>]

This command is used to send (transmit) data to a device or file.
The logical_channel number is the number assigned to the device (file)

in an OPEN (or DOPEN) statement.

The output is otherwise identical to

that of a PRINT statement, including the comma and semicolon
conventions. Note that certain screen-criented functions, such as
TAB and SPC do not have the same effect as they do with screen I/0.

It’s good practice to examine the I/0 status byte (and the DS disk
status for file 1/0) after every 1/0 instruction to check for problems
Or errors.

For formatted cutput, use the PRINT# USING command.

10 OPEN 1,8,15 Initialize disk drive

20 PRINT#1,"I" (same as DCLEAR)

30 CLOSE 1

10 DOPEN#1, "NEWFILE",W _ Create a SEQ file

20 FOR I=1TOl0 . :

30 PRINT#1, I,STRS${(I) Write numbers 1-10 -to it

40 NEXT :) _ . N

50 DCLQSE#1

10 OPEN 2,2,2,CHRS(12) Open 1200 baud RS232 channel

20 PRINT#2, "ATDT,5551212" Send modem a Hayes dial command’

- PRINT USING ~ OCutput formatted data to the screen, device, or file .

PRINT {#logical_channel number,] USING format: expression_list {<,|;>]

Read about the PRINT and PRINT# commands first for information
regarding the syntax of the expression_list and, for device output, .
establishing the logical_channel number.

The items in the expression list must be separated by commas (’,’).
The format is defined in a string literal or string variable and is

described below. See the PUDEF command for specifing special
formatting characters. The various formatting characters are:

CHARACTER SYMBOL NUMERIC STRING
? Pound sign # X X
. Plus sign + X
Minus sign - b4
Decimal Point - . X
Comma . X
Dollar Sign - $ X
Four Carets AnAn o X
Equal Sign ‘ = X
Greater Than Sign > X

The pound sign ("#’) reserves room for a single character in the
cutput field., If the data item contains more characters *than the

" number of pound signs in the format field, the entire field will be .

filled with asterisks (’*’),
~10 PRINT USING "####":X

For these values of X, this format displays:

A =12.34 . 12
A = 567.89 568
A = 123456 *Rxx

For a STRING item, the string data is truncated at the bounds of the
field. Only as many characters are printed as there are pound signs
in the format item. Truncation occurs on the right.

The plus (’+’) and minus (’-’) signs can be used in either the first
or last position of a format field but not both. The plus sign is
printed if the number is positive. The minus sign is printed if the
number is negative. . &

.If a minus sign is used and the number is positive, a blank is printed

in the character position indicated by the minus sign.

If neither a plus sign nor a minus sign is used in the format field
for a numeric data item, a minus sign is printed before the first digit
or dollar symbol if the number is negative and no sign is printed if
the number is positive. This means that one more character is printed
if the number is positive. If there are too many digits to fit into
the field specified by the pound sign and +/- signs, then an overflow
occurs and the field is filled with asterisks (’=*7). : '

A decimal point (’.’) symbol designates the position of the decimal
point in the number. There can be only one decimal point in any format
field. If a decimal point is not specified in the format field, the -
number is rounded to the nearest integer and printed without any
decimal places, '

When a decimal point is specified, the number of digits preceding the
decimal point (including the minus sign, if the number is negative)
must not exceed the number of pound signs before the decimal point., If

there are too many digits an overflow occurs and the field is filled
with asterisks(’*?), ‘ '

A comma (’,’) allows placing of commas in numeric fields. The position
of the comma in the format list indicates where the commas appears in
a printed number. Only commas within a number are printed. Unused
commas to the left of the first digit appear as the filler character,
At least one pound sign must precede the first comma in a field.

If commas are specified in a field and the number is negative, then a
minus sign is printed as the first character even if the character
position is specified as a comma.

FIELD EXPRESSION RESULYT COMMENT

#F. % -.1 -0.1 ° Leading zero added

##.# 1 1.0 Trailing zero added

#EEs -100.5 -101 - Rounded to no decimal places
#¢4. 10 © 10, Decimal point added

FS## 1 51 Leading dollar sign

#FEd =1000 *hxk Overflow because 4 digits and

minus sign don’t fit in field

A dollar sign (’$') symbol shows that a dollar sign will be printed in
the number. If the dollar sign is to float (always be placed before
the number), specify at least one.pound sign before the dollar sign.

If a dollar sign is specified without a leading pound sign, the dollar
sign is printed in the position shown in the format field. If commas
and/or a plus or minus sign is specified in a format field with a
dollar sign, the program prints a comma or sign before the dollar sign,
The four up arrows or carets symbol is used to specify that the the
number is to be printed in E format (scientific notation). A pound
sign must be used in addition to the Ffour up arrows to specify the
field width. The arrows can appear either before or after the pound
sign in the format field. Four carats must be specified when a number
is to be printed in E format. If more than one but fewer than four
carats are specified, a syntax error results., If more than four carats
are specified only the first four are used. The fifth carat is
‘interpreted as a no text symbol. An equal sign (’=’) is used to
center a string in a field. The field width is specified by the number
of characters (pound sign and =) in the format field. If the string
contains fewer characters than the field width, the string is centered
in the field. If the string contains more characters that can be fit
into the field, then the rightmost characters are truncated and the
string fills the entire field. A greater than sign (’>’) is used to

right justify a string in a field.

5 X=32: Y=100.23: AS="TEST"
10 PRINT USING "S##.## ":13.25,X,Y
20 PRINT USING "###>#";"CBM",AS

When this is RUN, the following output appears on the screen:

$13.25 $32.00 $x*x#x
CBM TEST

$xxxxx js printed instead of Y because Y has 5 digits, which exceeds
the format specification. The second line asks for the strlngs to be
right justified, which they are.

PUDEF - Redefine PRINT USING symbols
PUDEF deflnltzon _string

PUDEF allows redefinition of up to 4 symbols in the PRINT USING
statement. Blanks, commas, decimal points, and dollar signs can be
changed into some other character by placing the new character in the
correct position in the PUDEF definition _string. .

Position 1 is the filler character. The default is a space character.
Place another character here to be used Lnstead of spaces. Similarly,

Position 2 is the ¢omma character, Default is a comma.
Position 3 is the decimal point. :
Position 4 is the dollar sign.

. 10 PUDEF "*© PRINTs * in the place of blanks.
20 PUDEF " @" PRINTs @ in place of commas.
QAT - T [*** UNIMPLEMENTED ***]

RCIR — Get the current screen color
- RCLR(sourée)
[(*** CURRENTLY UNIMPLEMENTED ***]

This function returns the color assigned to source as an number in the
range of 0-15. The color scurces are: :
4
background
foreground
multicolor 1
multicolor 2
horder
highlight color

b= Oo

RDOT - Get the current position or color of the pixel cursor
RDOT (source)
(*** CURRENTLY UNIMPLEMENTED **«]
This function returns information about the current pixel location.

0 = current X position
l = current Y position

2 = color index

READ - Read data from DATA statements
READ variable list

READ statements are used along with DATA statements. READ statements
read data from DATA statements into variables, just like an INPUT
statement reads data typed by the user. READ statements can be used
in direct or program mode, but DATA statements must be in a program.

The variable types in the variable list must match the type of DATA
being read, or a ’‘TYPE MISMATCH’ error is reported., If there are
insufficent data in the program’s DATA statements to satisfy all of

the variables in the READ statement, an ’'OUT OF DATA’ error is reported.

The computer maintains a pointer to the next DATA item to be read by

a READ statement. Initially this pointer points to the beginning of
the program. As each variable in a READ statement is filled, the
computer moves the DATA pointer to the next DATA item. If all of a
READ statement’s variables are filled before all of the data has been
read from a DATA statement, the next READ statement will begin reading
data at the point where the previous READ stopped. :

The DATA pointer can be changed by the RESTORE command, It can be
reset back to the beginning of the program, or pointed to a specific
line number. See RESTORE. -

10 DATA 100’ 200’ FRED; nHELLO' MOM"; ’ 3.14’ ABC123} -lc7E-9
20 READ X,Y '

30 READ NAMES, MSGS, NULLS

40 READ PI, JUNKS, S

50 RESTORE »

RECORD — Specify a relative disk file record number
RECORD #logical_channel number, record [,byte]

This command allows you to access any part of any record in a RELative
type disk file. If the byte parameter is omitted, the access pointer
is pointed at the first byte of the specified record number.

Before you can use RECORD, you must OPEN a file. See OPEN and DOQPEN
for instructions. Also refer to your DOS manual for an explanation of
RELative type files. :

. 4
10 INPUT "ENTER RELATIVE FILENAME: ",F$ get name of existing file
20 DOPEN#1, (F$),L: PRINT DS$ open it & display disk status
30 R=1: INPUT “ENTER RECORD NUMBER: ",R get a record number
40 B=1: INPUT "ENTER BYTE (RETURN): ",B get byte number, if any

50 RECORD#1, R,B position file pointer
60 INPUT#1,RECS : read the record
70 PRINT RECS display the record

80 PRINT "CONTINUE? (Y/N}"

90 GETKEY AS: IF AS$="Y" THEN 30 '
100 DCLOSE#1 " close the file
REM - Place an explanatory remark or comment in a program

REM plain text message

The REMark command is just a way to leave a note to whomever is
reading a LISTing of the program. It might explain a section of the

program, give information about the author, etc.

REM statements in no way effect the operation of the program, except
to add length to it (and therefore slow it down a little). No other
executable statement can follow a REMark on the same line.

10 REM THIS PROGRAM WAS WRITTEN ON 2/14/91 BY F.BOWEN
20 REM SAMPLE PROGRAM

30 :

40 DIR tREM DISPLAY THE DISK DIRECTORY
$0 LIST "SAMPLE PROGRAM" :REM DISPLAY THIS PROGRAM

60 END ' '

RENAME -‘Rename a disk file
RENAME "oldname" TO "newname" [,Ddrive] [<ON|,>Udevice]

The RENAME command changes the name of a file in the disk directory.
Pattern matching is not allowed, and “newname™ must be a valid filename
that does not already exist on the disk. The file being renamed does
not need to be open, :

RENAME “TEST" TO "FINALTEST" :
RENAME (OLD$} TO (OLDS$+%".OLD") ON U (DEV)

RENUMBER - Renumber the lines of a BASIC program
RENUMBER [new_starting line [, [increment] [,old_starting line]]]

Renumber is used to resequence the line numbers of a BASIC program in
memory. All or part of a program can be renumbered. The RENUMBER
command first scans the program to make sure all the line numbers
referenced in commands (such as GOTO, GOSUB, TRAP, etc.) exist, that
new line numbers are in the legal range, and that changing the program
wJuld not overflow the available memory. - An ‘UNRESOCLVED REFERENCE’,
*LINE NUMBER TQO LARGE’, or 'OUT OF MEMORY’ error is reported-if
there’s a problem, and RENUMBER is automatically canceled without
having changed anything.

I1f the program passes all the checks, RENUMBER changes the specified
line numbers and updates all references to the old numbers throughout
the program and relinks the program. y

The new_starting_line is the number of the first line in the program
after renumbering. It defaults to 10. The increment is the spacing
between line numbers (eg., 10, 20, 30 would mean an incyement of 10).
It also defaults to 10. The old starting line is the line number in

the program where you want renumbering to begin. :

RENUMBER can be used in direct (edit) mode only. Note that line number
zero (0) is a wvalid line number. ‘

RENUMBER : Rentimbers the entire program. After
renumbering, the first line will be 10,
the second 20, etc. through the end
of the program

RENUMBER ,1 Renumbers the entire program as above,
' : but in increments of one. The first
line will be 10, the second 11, etc.

RENUMBER 100, 35, 80 Starting at line 80, renumbers the
program. Line 80 becomes line 100,
and lines after that are numbered in

T

increments of 3, through the end of
the program.

RENUMBER ,, 65 Starting at line 65, renumbers lines
in increments of 10, starting at line
10 through the rest of the program.

RESTORE — Position READ pointer at specific DATA stafemgnt
RESTORE {line]

The computer maintains a pointer to the next DATA item to be read by
a READ statement. Initially this pointer peints to the beginning of
the program. The DATA pointer can be changed by the RESTORE command.

Using RESTORE without specifying a line number will reset the DATA
pointer back to the beginning of the program. If a line number is
specified, the DATA pointer is pointed to that line. The line does
not have to contain a DATA statement., When the computer executes the
next READ statement, it will look for the next DATA item starting at
the line the DATA pointer is at..

See the READ command an example.

RESUME - Resume program execution after error TRAP
RESUME {line|NEXT]

Used to return to execution after TRAPping an error. If a line number
is given, the computer performs a ‘GOTO line’ and resumes execution at
that line. RESUME NEXT resumes execution at the statement following
the one that cause the error._ RESUME without any parameters will
resume execution at the stateflent that cause the error. :

If the computer encounters a RESUME statement outside of a TRAP routine
or if a TRAP was not in effect a ‘CAN’T RESUME’ error is reported.
RESUME can only be used in program mode. '

10 TRAP 90

20 FOR I=-5 TO §

"30 PRINT S5/1 -
40 NEXT

S0 END

60 - :
90 PRINT ERRS (ER): RESUME NEXT

RETURN - Return from subroutine or event handler
RETURN

This statement is associated with the GOSUB (GO SUBroutine) statenent.
When a subroutine is called by a GOSUB statement, the computer
remembers where it’s at before it calls the subroutine. When the
computer encounters a RETURN statement, it returns to the place it
last encountered a GOSUB and continues with the next statement.

If there waén't a previous GOSUB, then a 'RETURN WITHOUT GOSUB’ error
is reported. :

RETURN is also used by event handlers, set up by the COLLISION
command. See COLLISION. S

RGR - Get the current graphic mode
RGR (0) _
[*** CURRENTLY UNIMPLEMENTED **%]
This function returns current graphic mode, A result of zero means
the display is text, a non-zero result means it’s graphic.
RIGHTS - Get the rightmost characters of a string
RIGHTS {string,count)
This function returns a string cbntaining the rightmost-’count' number .

of characters of the string expression. Count is an numeric
expression in the range (0-255). If count is greater than the length
of the string, the entire string will be returned. If count is zero,
a null (empty) string will be returned.

A$ = RIGHTS$ ("123ABC", 3) Result is AS="ABC"

RMOUSE —~ Get the mouse position and buttbn‘status
RMOUSE [Xposition [,Yposition [,button]]]

X,Ypositioh = current position of mouse pointer sprite
Button - = current status of mouse buttons

0 = no button -
1 = right button
128 = left button

129 = both buttons

RMOUSE is a command which retrieves a mouse’s current position and

the state of its buttons, and places this information into the
sjecified numeric variables. If a mouse is not installed, "-1" is
returned for all variables. If both ports are enabled, buttons from
each port are merged. Use the MOUSE command to turn a mouse on or off.

10 MOUSE ON, 2, 1 ‘Turn mouse on, port 2, sprite 1

20 DO Begin loop

30 RMOCUSE X, Y, B Get mouse position & buttons

40 PRINTUSING"### ";X,¥,B Show " " "

50 LOOP UNTIL B=129 . Loop until user presses both buttons

60 MOUSE OFF Turn mouse off

RRD - Get a pseudo—random number
RND {type)

The RND function returns a pseudo RaNDom number between 0 and 1. The
random sequence returned is determined by the type parameter:

type = { Returns a random number based upon the system clock.

type < 0 .~ Negative numbers "seed" the random number generator,
defining a new but reproducible random sequence,

type > 0 : Positive numbers draw the next random number from the
sequence defined by the last "seed"™ wvalue.

This lets a programmer use a reproducible sequence while debugging
(fixing) a program, so that random errors c<an be easily reproduced.
Once the program has been fixed, it can be "seeded" such that a random

sequence is used every time the program is run.

‘10 DO

20 INPUT "SEED": S

30 IF S=0 TBEN END

40 FOR I=1 TO 5

50 PRINT INT{(RND(1)*6)+1, INT{(RND(l}*6)+1
60 NEXT

70 LOOP

The above program will demonstrate the results of seeding the random
number generator. It lets you specify a positive or negative seed
value, and then prints the first 5 random pairs of that sequence.
Enter a zero to end the program. The calculations in line 50 make the
random numbers be integers from 1 to 6, like dice. Type in a negative.
number to start a new sequence, and a positive number to "rell"™ more
dice from that sequence., Every time you enter "-1", for example, you
will roll the same numbers: :

first roll 2 and 6
second 6 and 1
third 1l and 1
fourth 1 and 4
-£ifth S and 5§

Games and statistical programs should use RND(0) for true randomness,
or seed the generator with a random number, such as RND{-TI).

The general form for getting random integers using RND is:
INT{ RND(Q) * MAX) + 1
where MAX is the highest number you can get. This gives you numbers
as low as 1 and as high as . For dice, MAX is 6 (or 12 if you want
to simulate rolling two die af once). For cards, MAX is 52. '
INT(RND(Q) * 1le)
This form will return integers from zexo to 15, which is useful for

generating random color values, for example.

RREG —~ Get register data after a SYS call

RREG [a_reg] [,[x_reg] [,(y_reg] [,[z_reg} [,status]]}]
Following a SYS call, the RREG command retrieves the contents of the
microprocessor’s registers and puts them into the specified numeric
variables. BSee the sample program at SYS.

RSPCOLOR — Get multicolor sprite colors
RSPCOLOR (multicolor#)

Returns the current c¢olors for multicolor spriteé. Color values range
from 0-15. Use RSPRITE function to get the foreground sprite color.

multicolord
multicolor#

1 gets multicolor #1
2 gets multicolor #2

See SPRITE and SPRCOLCR.

RSPPOS - Get the location and speed of a aprite

RSPPOS (sprite,parameter)

The RSPPOS function returns the current X or Y position of a sprite
and its speed, set by the MOVSPR command. A sprite does not have to
be on to use RSPPOS. The sprite number must be in the range of 0-7,
and the parameter is: ‘

¢ to get current X position
1l to get current Y position
2 to get current speed (0-255)
RSPRITE - Get information about a sprite
RSPRITE (sprite,parameter)
The RSPRITE function returns the current state of a sprite, set by

the SPRITE command. The sprite number must be .in the range of 0-7,
and the parameter is: : .

0 to see if it’s turned on (1)=ves {0)=no
1 to get sprite foreground color (0-15)

2 to get priority over background (1)=yes (0)=no
3 to get X-expansion factor {l)=yes {(0)=no
4 to get Y-expansion factor (l})=yes (0)=no
5 Lo get multicolor factor (1)=yes (0)=no

ROUN — execute BASIC program

RUN {line #] :
RUN "filename™ [,Ddrive]‘[<ONI,>Udevice]

RUN executes the BASIC program that is currently in memory. The
program has to be LOADed (DLOAD) or manually typed in before it can

be executed. 1If a line number is specified, execution begins at that
l'ne. If a filename is specified, the program is automatically locaded
from disk into memory and executed. RUN can be used in a program,

RUN clears all variables and open channels (but it does NOT properly
close open disk write files- used DCLOSE or DCLEAR beforehand). RUN
also resets the runtime stack pointer (clears GOSUB & FOR/NEXT stacks},
the DATA pointer, and the PRINT USING characters. To start a program
without initializing everything, use GOTO.

RUN Starts the program at the first line.
RON 100 Starts the program at line 100.
RUN "TEST" Loads the program TEST from the gdefault system

disk and starts the program at the first line,

RWINDOW - Get information about the current text window
RWINDOW (parameter)

This is a function that retﬁrns information about the current console
text display. The parameter is specified as:

0 to get the maximum line # in the current window
1 to get the maximum column # in the current window
2 . to get the screen size, either 40 or 80 columns

SAVE - Save a BASIC program in memory to disk

SAVE "[([@}drive:]filename" [,device_number]

This command copies a BASIC program in the computer’s BASIC memory
area into a PRoGram-type disk file. If the file already exists,

the program is NOT stored and the error message 'FILE EXISTS’ is
reported. If the filename is preceded with an '@0:’, then if the file
exists it will be replaced by the program in memory. Because of some
problems with the ’save-with-replace’ option on older disk drives,
using this option is not recommended if you do not know what disk drive
is being used (DELETE the file before SAVEing) . Pattern matching is
not allowed. 1In the case of dual drive systems, the drive number must
be part of the filename. . '

Use the VERIFY or DVERIFY command to compare the program in memory with.
a program on disk. To save a binary program, use the BSAVE command.,

SAVE "myprogram"™ Creates the PRG-type file MYPROGRAM
. on the default system disk and copies
the BASIC program in memory into it.

SAVE "@0:myprogram" Replaces the PRG-type file MYPROGRAM
with a new version of MYPROGRAM. If
MYPROGRAM doesn’t exist, it’s created.

SAVE F$,9 e Saves a program whose name is in F$
on disk unit 8. '

SCALE, ~ Set the logical dimension of the graphic screen
[*** NOT YET IMPLEMENTED A%

SCNCLR - Clear a text or graphic screen
SCNCLR Ycolor]

This command will clear the current text window if [color] omitted,
othexwise it will clear the current graphic screen using the given
celor value. See also SCREEN CLR. ' '

- SCNCLR -Clears the text screen. If a window is defined,
it clears only the window area. :

SCNCLR 0 ° Clears the current graphic screen with color 0.

SCRATCH - Delete files from disk directory
Recover accidentally deleted files !

SCRATCH "filespec". [,Ddrive] [<ON|,>Udevice] [,R]

SCRATCH, ERASE, or DELETE are different names of the same command.
They are used to delete a file from a disk directory, or optionally to
recover if possible an accidentally deleted file. The diskette must
not be ’‘write protected’, or a ’'WRITE PROTECT ON’ error is reported.

WARNING: Deleting a file will destroy all existing data in that

file. Be extremely careful if you are using pattern matching, which
can delete any or all files. 1In direct mode, you are asked to confirm
what you are doing with ’ARE YOU SURE?’. Type 'Y’ and press return to
proceed, or TYPE ANY OTHER CHARACTER AND PRESS RETURN TO CANCEL the
command. In program mode there is no confirmation prompt.

Upon completion, in direct mode only, the computer will display the
number of files deleted., -

Refer to your disk manual for other details. Different disk drives
implement slightly different pattern matching rules or support features
such a specially protected files. -

If the 'R’ecover option is present and the DOS supports it, a deleted
file can be recovered if nothing else has been written to the diskette
since the file was accidentally deleted. You will still be asked to
confirm the operation, and upon completion the computer will display
the number of files restored. . _

SCRATCH "oldfile™ Deletes the file QOLDFILE from the disk

in the default system drive.
SCRATCH "file.*" Deletes all files beginning with FILE.
SCRATCH (F$), U(DD) Deletes the file whose name is in F$

from the disk in device DD.

SCRATCH "saveme" ,R Attempt to recover the program SAVEME.

SCREEN - Graphic command
The SCREEN command is used to initiate a graphic command. It always
precedes another command word which identifies the graphic operation
to be performed: -
SCREEN CLR - Set graphic screen color

SCREEN CLR color#

Clears (erases) the currentlyIOPened graphic screen using the given
color value. Use SCNCLR to clear a text screen. See also SCNCLR.

SCREEN DEF - Define a graphic screen
> SCREEN DEF screen#, width, héight, depth
' screen# ' 0-1
width - 0=320, 1=640, 2=1280
height 0=200, 1=400
depth -1-8 bitplanes (2-256 colors)

Defines a logical screen (numbered 0 or 1), specifies its size and

how many colors (bitplanes) it has. It does not allow access to the
screen and it does not display the screen. The screen must be defined
before it is opened for viewing and/or drawing to. '

SCREEN SET - Set draw and view screens g
' SCREEN SET DrawScreen#, ViewScreeni

draw screen # 0-1
view screen § 0-1

This command specifies which logical screen is to be viewed and
which logical screen is to be accessed by the various draw commands.
The screen must be defined and opened first. Both the draw and the
view screen can be, and usually are, the same logical screen. For
double buffering, they are different. , '
SCREEN CPEN L - Opén a screen for access

SCREEN OPEN screen# [,error_variable]

screenf 0-1

error variable [*** NOT YET IMPLEMENTED ***]

This command actually sets up the screen and allocates the necessary
memory for it. If it’s the view screen it will be displayed. 1If it’s
the draw screen, it can now be drawn to. If there is not enough
memory for the screen, *NO GRAPHICS AREA’ is reported and the screen
is not opened,

SCREEN CLOSE - Close a screen
SCREEN CLOSE screen#
screen# 0-1
This command closes a logical screen, ending accéss to it by the

draw commands if it’s the draw screen and restoring the text screen

if it’s the view screen. SCREEN CLOSE deallocates any memory reserved
for the screen. . :

SAMPLE GRAPHIC PROGRAM:

1 TRAP 170 in case of error want text screen
10 GRAPHIC CLR initialize graphics
20 SCREEN DEF 1,0,0,2 . define a 320x200x2 graphic screen
30 SCREEN CQPEN 1 open it
40 PALETTE 1,0, 0, O, 0 define screen 1, color 0 = black
50 PALETTE 1,1, 15, Q, O define screen 1, color 1 = red

55 PALETTE 1,2, 0, 0,15 define screen 1, color 2 = blue
60 PALETTE 1,3, 0,15, 0 ‘ define screen 1, color 3 = green
70 SCREEN SET 1,1 rmake it the view screen

80 SCNCLR 0 clear screen with palette color 0
S0 BORDER 0 set border color to color 0
100 PEN 0,1 _ make draw pen = color 1 (red)
110 LINE 100,100, 150,150 ? draw a diagonal red line
120 PEN 0,2 make draw pen = color 2 (blue)
130 BOX 50,50, 50,80, 80,50, 80,80 draw a2 blue hox
140 PEN 0,3 make draw pen = color 3 (green)
150 CHAR 25,50, 1,1,2, ™WORDS" - draw green text
160 SLEEP 5 - pause for 5 seconds
170 SCREEN CLOSE 1 close graphic, get text screen
180 PALETTE RESTORE - restore normal system colors
%90 BORDER 6 restore normal border color

G0 END

SET — Set various system parameters ,
The SET command is used to set a system parameter. It always
precedes another command word which identifies the parameter to be
changed: '

SET DEF - Set default system disk drive
SET DEF device

The BASIC DOS commands default to disk unit 8. Use SET DEF to change
which device these commands default to. This command does not renumber
a disk device, use SET DISK for that. Commands which specify a device
will still access the device they specified. A program can be made
more "user friendly" by either not specifying a drive (thus using the
user’s perferred drive) or by specifying device 1. Device number 1
means "use the system default drive, whatever its number is."

10 DIR gets directory of device 8
20 DIR U1 gets directory of device 8

30 DIR Ul0 gets directory of device 10

40 SET DEF 10 change the default drive to unit 10
50 DIR gets directory of device 10
60 DIR Ul gets directory of device 10
70 DIR U8 _ _ gets directory of device 8
SET DISK - Change a disk device number

SET DISK oldnumber TC newnumber

- Use this command to renumber (change) a disk drive’s unit number.

Not all drives can be renumbered- refer to your disk drive manual
for details. This command sends to the disk’s command channel the
conventional CBM serial disk drive "M-W" command. See alsc the
DISK command, which lets you send any command to a disk drive.

SET DISK 8 TO 10 ° ‘Change unit 8’s number to 10
Because the built-in C64DX drives always take precedence over serial
bus drives, this is one way to get the built-in drive "out of the way"
so that you can access a serial bus drive §8.
SGN ~ Get the sign of a number

SGN (expression)

The SiGN function returns the sign of a numeric expression as follows:

- If the expression is < 0 (negative) returns -1
If the expression is = 0 (zero) returns 0
If the expression is > 0 (positive) ..., returns 1
SIN - Sine. function
> SIN (expression)

This function returns the sine of X, where X is an angle measured
in radians. . The result is in the range -1 to 1.

X = SIN(pi/4) Result is X=0.707106781
To get the sine of an angle measured in déékees, multiply the numeric
expression by pi/180. :
SLEEP — Pause program execution of a specified period of,time
SLEEP seconds

Temporarily suspends execution of your program for 1 to 65535 seconds.

SLOW - Set system speed to 1.02ZMHz

SLOW is used primarily to directly access "slow mode only" devices
such as the SID sound chips. FAST is the default system speed.

SOUND - Prodﬁbe‘sound effects

SOUND v, £, d {,[dir] [, {m] (e (8] [, [w] {,p} 1111

voice {1-6)
frequency (0-65535)

(19}

thq

d = duration {0-32767) :

dir = step direction (O(up), 1l{down), or 2(oscillate)) default=0

m = min frequency (0-65535) default=0

s = sweep (0-65535) default=0

w = waveform (0=triangle,1=saw,2=square,3=noise) default=2

P = pulse width {0-4095) 50% duty cycle=default=2048
The sound command is a fast and easy way to create sound effects

and musical tones. The first three parameters are required to,

select the voice, frequency, and duration of the tone. 'The
duration is specified in "jiffies" (60 jiffies = 1 second).

Optionally, vou can specify a waveform and, for square waves, the
pulse width. The SOUND command can sweep. a voice through a series
of equally-spaced frequencies. The direction of the sweep, minimum
and maximum frequencies can be programmed. If time expires before
the sweep is done, the sound stops. If the minimum or maximum
frequency is reached before time expires, the sound repeats.

For programming details, refer to the SID hardware documentation. Use
the VOLume command to change the volume of the sound. Note that the
TEMPO command affects PLAY strings only, not SOUND effects.

(£* 0.0596) Hz
(p/40.95) %

FREQout:
PWout

Each voice can be programmed separately and played simultaneocusly

for a wide variety of sound effects. Once a sound effect is initiated,
BASIC execution continues with the next statement while the sound
pPlays out, allowing you to combine and control graphics, animation,

and sound from a BASIC program. The examples below include information
about how to generate precise tones for exact times, but for most
casual users trial and error are perfectly acceptable! (Note that the
values used are for 60Hz (NTS;} systems) :

Using veoice 1, emit a square-wave, 440Hz tone for 1 second. Note
that 440Hz = 7382 * 0,059¢ using the above formula.

SOUND 1, 7382, 60
Using voice 2, sweep from 100Hz (m=1638) to 440Hz (£=7382) in
increments of 1lHz (s=17). The time required to do this can be
calculated as t=(f-m)/s, so t=336 jiffies. ~

SOUND 2, 7382, 336, 0, 1678, 17

Using voice 3, make a neat sound using an oscillating sweep - (dir=2)

and a sawtooth waveform (w=1) for 3 seconds {t=180) .

SOUND 3, 5000, 180, 2, 3000, 500, 1

* SPC - Space PRINT output

SPC (number)

The SPaCe function is used to format PRINTed data to the screen,
a printer, or a file., It specifies the number of spaces to be
skipped, from 0 to 255. A semicolon (":’) is always assumed to
follow SPC, even if it appears at the end of a print line.

The SPC function works a little differently on screen, printer,

and disk output. On the screen, SPC skips over characters already
on the screen, which is not the case with printer and disk output.
On printers, if the last character on a line is skipped, the printer
will automatically perform a carriage return and linefeed. .

PRINT "123";SPC(3);"456" Displays ‘123 4567

PRINT "X";SPC{5) :PRINT"X" Displays ’X X’
See also the TAB function. A better way to format PRINT output is
with PRINT USING.
SPRCOLOR - Set multicolor sprite colors

| SPRCOLOR ([sprite_mcl] [,sprite_mc2]

Use the SPRITE command to set up a multicolor sprite, and used SPRCOLOR
to set the additional ceolors, Note that these colors are common to all-
multicolor sprites. The color values must be in the range (0-15). Use
the RSPCOLOR function to get the current multicolor sprite colors, and .
RSPRITE to get the current sprite foreground color.
SPRDEF - Define a sprite pattern

[*** NOT EXPECTED TO BE IMPLEMENTED ***]

SPRITE - Turn a sprite on or off, and set its characteristics
SPRITE number [, [on] [, [fgnd] [, [prioxity] [, [x_exp} {,[y_exp] [,mode}]}1]]

The SPRITE command allows you set all of the characteristics of a
sprite. Use the MOVSPR command to position it or set it in motion.
Use the SPRCOLOR to set the multicolor sprite colors, if you are
using multicoler sprites. _ '

All the parameters except the sprite number are optional. If you
.dgp't specify a parameter then it won’t be changed.

number = sprite number (0-7)
on = enable (1) or disable(0)
color = sprite foreground color (0-15)
priority= sprite to display data priority:
0 means sprite goes over screen data
1l means sprite goes under screen data
X,y-exp = sprite expansion on (1) or off (0)
mode = sprite mode:

0 high resolution
1 multicolor
f]

The SPRITE command does not define a sprite. The sprite definitions
must be lcocaded into the sprite area first ($600-$7FF). Use the
BLOAD and BSAVE commands. {*** THIS MAY CHANGE *xx] A sprite is
24 pixels wide and 21 pixels high. Each sprite definition requires
63 ($40 hex) bytes: -

5600 Sprite 0 definition
5640 Sprite 1 definition
$680 Sprite 2 definition
S6C0 Sprite 3 definition
$700 Sprite 4 definition
8740, Sprite 5 definition
© $780 Sprite 6 definition
57C0 Sprite 7 definition

Use the RSPRITE function to read a sprite’s characteristics, or the
RSPPOS function to read a sprite’s position. The RSPCOLOR function
is used to get the current multicolor sprite colors. '

10 BLOAD™sprite 1 data",P(dec("640")) Load sprite 1’s definition

20 SPRITE 1, 1, 2 Turn it on, make it red

30 MOVSPR 1, 24,50 Put it at top-leftmost corner

40 SPRSAV 1, 2 Copy sprite 1 definition to 2

50 SPRITE 2, 1, 7 Turn on sprite 2 make it vellow
60 MOVSPR 2, 320,229 Put it at bottom~rightmost corner
70 BSAVE"sprite 2 data"), P{dec("680")) TO P(dec("6c0")) save sprite. 2
80 SPRITE 1, 0 Turn off sprite 1

90 SPRITE 2, 0 . Turn off sprite 2

SPRSAV -~ Copy a sprite definition
SPRSAV source,-destination

Use this command to copy a sprite’s data (shape) to another sprite or
into a string variable, or copy a shape from a string variable into a
-sprite. You can have many different sprite shapes in memory at one
time, all stored in strings. This makes it possible to animate
sprites from BASIC by quickly "flipping through® shapes, using each
shape like a frame from a movie film.

SPRSAV 0, AS copy the data (shape) of sprite 0 into AS
SPRSAV AS, 2 copy the data (shape) in A$ into sprite 2
SPRSAV 1, 2 ‘copy the data (shape) in sprite 1 to sprite 2

STASH - (see the DMA command)

SQR — Square root functicn »

SQR (number)

This function returns the of the SQuare Root of the given numeric

expression. The numeric expression must not be negative or an
ILLEGAL QUANTITY’ error is reported.

A = BQR(10) Result is A = 3.16227766
STEP - See FOR/NEXT/STEP

STOP - Halt program execution
STCP

When STOP is executed, the computer immediately stops running the
program and reports ‘BREAK IN LINE xx’. No variables are cleared
and files are not closed. ‘

This command is usually used while debugging (fixing) a BASIC program,
since it lets you stop at a specific place, examine variables, change
variables, and restart the program where it was halted (see CONTinue
command) ¢r some other line (see GOTO). 1In many cases, you can even
change the program and use GOTO to resume execution with variables
and open channels intact. ‘

SWAP - (see the DMA command)

STR$ - Get the string representaion of a number
STRS {number)
The STRing function returns a string identical to PRINT’s output

of the given numeric expression. See PRINT for details regarding
the format of numeric output. STRS is the opposite of VAL.

A = S§TRS(123) Result is A$ = " 123"
AS = STRS$(-123) Result is AS = "-123"
A$ = STRS(.009) Result is A$ = ™ 9E~03"

SYS - Call a ROM routine or user machine language routine

SYS address (,[a] [,(x] [.{y]l [, (2] [rSj IRD

This statement performs a call to a machine language routine at the
specified address (range 0-65535, $0000-SFFFF) in a memory bank set
up previously by the BANK command.

The microprocessor’s registers are loaded with the values specified
in the parameters following the address (if given) and a JSR

(Jump SubRoutine} instruction is performed. When the called routine
ends with an RTS (ReTurn from Subroutine), the microprocessor’s.
registers are saved and control is returned to the BASIC program.
The microprocessor’s registers can be examined with the RREG command.

Because this command instructs the computer’s microprocessor (CPU)
to perform something, extreme care should be taken in its use. It
can easily crash the computer if you do something wrong (press the

reset button to reboot). Also see the BOOT SYS command. -
BANK 128: SYS DEC ("FF5C") Call the Kernel’s PHOENIX routine.
BANK 128: SYS DEC("FF81™) Reset the Screen Editor

>
10 BANK 128
20 BLOAD"user routine™,P (dec("1800™)) Load a user routine
30 SYS DEC{"1800"), areq, xreg Call it with args in A and X
40 RREG areg, xreg, , , sreg Get args back in A, X, and §°
50 carry = (sreg AND 1) Get carry flag from S
60 PRINT "ACCUMULATOR = ";HEXS (areg) Display registers

60 PRINT "X REGISTER = ";HEXS$ (xreg)
60 PRINT "CARRY FLAG .= ";carry

See the USR function for another way to call machine language routines.
' ‘

TAB - Space PRINT output
TAB (number)

The TAB function is used to format PRINTed data to the screen, a
printer, or a file. 1It’s primarily for screen text output, moving
the cursor to the specified column (plus one) as long as the current
print position is not already beyond that point (for example, if the
current print position is the first column, TAB(1l) would print
subsequent text beginning in column 2). If the current print position
is already beyond the column specified by the TAB function, nothing

is done. For disk dnd printer output, TAB works exactly like the SPC
function (see SPC). :

A semicolon (’;’) is always assumed to follow TAB, even if it appears
at the end of a print line.

PRINT "TEXT";TAB(10);“HERE" Result is ’TEXT HERE’
PRINT "TEXT":SPC(10Q); "HERE" Result is *TEXT HERE’

The above examples illustrate the difference between TAB and SPC. See
also the SPC function. A better way to format PRINT output is with
PRINT USING. Don’t confuse the TAB function with the TAB character,
CHR5 (9}, which is used to format data using the programmable TAB stops.,

TAN - Tangent function
TAN (ekpression)

This function returns the tangen£ of the numeric expression, measured
in radians. If the result overflows, TAN(pi/2) for example, an
"OVERFLOW’ error is reported. _

X = TAN(1) Result is X=1.55740772

To get the tangent of an angle measured in degrees, multiply the
numeric expression by pi/180. .

TEMPO -~ Set the tempo (speed) of a PLAY string
&+
TEMPO rate

Use this command to adjust the tempo (speed) of music playback‘by
the PLAY command., The rate determines the duration of a wheole note.

The default is 12, making a whole in 4/4 time last 2 seconds. The
formula is: -

duration = 24/rate

The higher the rate, the fastgr the note. The range is {(1-255).

THEN - See IF/THEN/ELSE

TO — See FOR/NEXT/STEP. Also used as a subcommand.

TRAP - Define an BASIC error handler
TRAP [line number]

When turned on, TRAP intercepts all BASIC execution error conditions
except ’UNDEF’D STATEMENT ERROR’. Even the STOP key can be TRAPped.

When an error occurs, BASIC saves the error’s location, line number,
and error number. If TRAP is not set, BASIC returns to direct mode
and displays the error message and line number. If TRAP is set,
BASIC performs a GOTO to the line number specified in the TRAP
statement and continues executing, '

Your BASIC error handling routine can examine the error number,
message, and the line number where the error occurred and determine
the proper course of action. The system error words are:

ER ' Error Number

EL Error Line (line where the error occurred)
ERRS{) Error Message ' ,

If ER is -1, then a BASIC error did not occur. The error routine
should check the disk status words, in case they were the cause of

the error:

DS Disk Error Number
Ds$ Disk Error Message

Refer to the list of BASIC and Disk error messages in the appendizx.

Note that an error in your TRAP routine cannot be trapped. The
RESUME statement can be used to resume execution- see RESUME.

TRAP with no line number specified turns off error TRAPping.

10 TRAP 90 enable trapping
20 FCR I==5 TO § _ . : .

30 PRINT 5/1 error when I=0

40 NEXT :

S0 TRAP . turn trapping off
60 END

70 : . '

90 PRINT ERRS (ER) : RESUME NEXT error routine

TROFF - Tarn off trace mode
TRON - Turm on trace mode

TROFF
TRON

Trace mode is used while debugging (fixing) a BASIC program. TRON
enables tracing, and TROFF disables tracing. When the program is run
and trace mode os on, the line number of the command that is being
executed is displayed on the screen. If there are three commands on
the line, the line number will be displayed three times, once each time
one of the commands is executed. Trace mode lets you know what the
computer is doing.

T ®Bce mode works even when a graphic screen is being displayed, but

the line number is still displayed on the text screen so you won’t be
able to see it until the graphic screen is turned off. If your program
is doing alot of PRINT statements, the display can seen a little
confusing.

Trace mode can be set in direct mode to trace the entire program, or
it can be turned on and off from within your program to let you trace
only selected portions of the program.

Trace mode has no effect on commands entered in direct (edit)‘mode.
The NEW command disables trace mode, but RUN and CLR do not.

10 FOR I=-5 TO 5
15 TRON

20 PRINT 5/1

25 TROFF

30 NEXT

TYPE - Display the contents of a sequential disk file

TYPE "filename" [,Ddrive] (<, |ON>Udevice]
Use this command to print the contents of a PETSCII data file on
the screen. The file must contain lines no longer than 255
characters long and terminated by a return character {CHRS (13)) .
Lines too long result in a ‘STRING TQO LONG’ error.

TYPE "readme" display the contents of the README

file on the screen

The command sequence below will print the contents of the README file
on a CBM serial bus printer in upper/lower case mode.

OPEN 4,4,7: CMD4: TYPE"readme"™: CLOSE{4
UNTIL -~ See DO/LOOP/WHILE/UNTIL/EXIT

USR - Call a user defined machine language function
USR {expression)

When this function is used, the program jumps to a machine language
subroutine whose starting address must be POKEd into system memory
(BANK. 128) at address 760 (low byte) and 761 (high byte), or $2F8 hex.
The floating peoint wvalue of the numeric expression is passed to the
routine in the Floating point ACCumulatcor (FACC), and the wvalue to-
be returned is taken from the FACC when the routine ends.

If the USR vector is not set up prior to making the USR call, an
*UNDEF’D FUNCTION’ error is reported. The routine must be located
in the system bank. The BANK command does not affect USR.

Using this method of calling a machine language routine requires a
fair amount of set up and a good knowledge of the lower level math
routines built into BASIC. See the 5YS command, which is more
commonly used to call a machine language routine.

The following program illustrates the basic steps required for
installing a USR routine and calling it:

10 BANK 128 - ? System bank for poke & load
20 UV = DEC(“lBOO“) Where my routine is

30 BLOAD "my user routine”,P (0V) Load my routine

40 POKE DEC("2F8"), UV AND 255, UV / 256 Set up USR address

50 X = USR{123): PRINT X Call my routine with the

the value 123, get back and
print whatever my routine
- : leaves in FACC

The follow;ng program actually works. It points the USR vector to the
BASIC math jump table entry for the routine which inverts the sign
of the number in the FACC. Type in positive & negative numbers:

10 BANK 128 System bank *£or poke
20 POKE DEC(™2F8"), DEC("33™), DEC(“?F“) Set up USR address

30 DO: INPUT"SIGNED NUMBER"; N Get number input

40 : PRINT USR(N) Display USR output

50 : LOOP UNTIL N=0 _ End if user types zero

USING -~ See PRINT USING

VAL - Get the numerical value of a string

. VAL (string)

The VALue function converts a string into a number. The conwersion
starts with the first character and ends at the end of the string or
the first character that is not allowed in normal number input.
Spaces are ignored. 1If the first character of the string is not a
legal character, a zero is returned.

o ——— ———t ——

_The VAL function works the same way the INPUT and READ commands do.
VAL is the opposite of STRS.

X = VAL{"™ 123") Result is X = 123
X = VAL({"-123™) Result is X = -123
X = VAL(" 9E-02") Result is X = ,09

VERIFY ~ Compare a program or data in memoxry with a disk file
VERIFY "filename" [,device number [,relocate flag]]

This command is just like a LOAD command, except instead of putting
the data read from a file inteo memory, the computer compares it to
what is already in memory. If there’s any difference at all a
'VERIFY ERROR’ is reported.

. The filename must be given, and pattern matching may be used.. In

the case of dual drive systems, the drive number must be part of the
filename. If a device number is given, the file is sought on that
unit, which must be a disk drive. If a device number is not given,
the default system drive is used. See also DVERIFY. '

Note: If the BASIC program in memory is not located at the same address
as the version on disk was SAVEd from, the files will not match even if
the program is otherwise identical.

The relocate_flag is used to VERIFY binary files. If the relocate flag
is present and non-zero, the file will be compared to memory starting
at the address stored on disk when the file was SAVEd. The memory bank
used is the bank given in the last BANK statement. The ending address
is determined by the length of the disk file. The comparison halts ’
on the first mismatch or at the end of the file. The area to be
compared must be confined to the indicated menory bank. Do not use

t%s relocate_flag to verify BASIC programs. See also BVERIFY.

VERIFY "myprogram"

Good: SEARCHING FOR 0:myprogram Bad: SEARCHING FOR 0:myprogram
VERIFYING . ’ VERIFYING ’
CK - PVERIFY ERROR
VERIFY "PROG" - Compares BASIC program in memory to file PROG
on the default system disk.
VERIFY FILES,DRV Compares program in memory to a program whose
name is in the wvariable F$ on the unit whose
number is in DRV. s
VERIFY "0:PROG™,8 Compares memory to BASIC program PROG on unit
; drive-0, ‘
BANK 128 Compares a binary file into memory. The
VERIFY "BIN",8,1 address used comes from the disk file, but you

must specify the memory bank.
VIEWPORT - [*** CURRENTLY UNIMPLEMENTED *¥*]

VOL - Set audio volume level
VOL volume
[(*** THIS COMMAND WILIL CHANGE **¥)

This statement sets the volume level for SOUND and PLAY statements.

VOLUME can be set from 0 to 15, where 15 is the maximum volume, A
volume of 0 turns sound output off. VOLume affects all 3 voices.
Note that PLAY strings can change the volume, too.

WAIT - Pause BASIC program until a memory state satisfied

WAIT address, and_mask [,xor_mask]

The WAIT statement causes program execution to be suspended until data
at a specified memory location matches a given bit pattern. It’s used
to pause your program until an event occurs.

The event could be an I/0 state (such as a fire button or peripheral
port change), a hardware state (such as the raster position or RS§232
status), or memory change caused by an interrupt event (such as a
keyboard scan).

The WAIT statement tells the computer to read (PEEK) a memory location
(0-65535) and AND the value it got with the number in and_mask (0-255).
If the result is zero, repeat the operation until the result is not

zero. This is like the following BASIC instructions, but much faster:

DO: result = PEEK (address): LOOP UNTIL (result AND and mask) <> 0
This works if the state you are WAITing for is non-zero (a one or
"high™ state). If you want to wait for a zero state (a "low" state),
you need to use the xor_mask option to "flip™ the bits of the result.
Note that it’s possible to "hang" your program indefinitely if the
state you are waiting for never happens or you specify the wrong data.
Press the STOP and RESTORE keys at the same time to get control back.

Be sure to use the BANK commagd before you tell the computer to WAIT,

- to specify which 64K memory bdnk the address is in. Note that a BANK

number greater than 127 (i,e., a bank number with the moest significant
bit set) must be used to address an 1/0 location, such as the VIC chip.
Refer to the system memory map for details.

10 BANK 128 Wait for the VIC raster +o be

20 WAIT DEC(*DO11"), 128 offscreen (want RC8 = 1)
10 BANK 128

20 WAIT DEC("DO11"), 128, 128 Wait for the VIC raster to be
onscreen (want RC8 = ()
10 BRANK 128

20 WAIT DEC("D3"), 1 Wait for user to press shift

30 WAIT DEC("D3"), 2 Wait for user to press C= key
40 WAIT DEC("D3"), 4 Wait for user to press CTRL key
50 WAIT DEC("D3%), 8 Wait for user to press ALT key

WHILE -~ See DO/LOOP/WHILE/UNTIL/EXIT °
WIDTH - [*** CURRENTLY UNIMPLEMENTED il

WINDOW - Set a text window
' WINDOW left column, top_row, right column, bottom_row [,clear]

This command defines a logical text screen window., All text I/O will
be confined to this window. The row parameters must be in the range
(0-24), and the column parameters must be in the range (0-79) for
80-column screens or (0-39) for 40-column screens, The parameters are

always referenced to the physical screen (i.e., you cannot define a
window within a window). If the clear flag is given, the new window
area will be cleared after it’s set up.

r

Use the RWINDOW function to get the current window size.

You are responsible for saving and restoring screen data in all windows
because the WINDOW command simply sets the window margins. The WINDOW

command does not draw a border around a window. All ¢olor commands and
screen modes (such as scroll disable, TAB stops, etc.) are global,

Two consecutive "home" characters will reset the window definition
back to the physical screen.

WINDCW 0,0,39,24 Define a window in 80-column mode
_ that is the left half of the screen

WINDOW 40,0,79,24 Define a window in 80-column mode
that is the right half of the screen

WINDOW 0,0,79,12 Define a window in 80-column mode
that is the top half of the screen

WINDOW 0,13,79,24 Define a window in 80-column mode
that is the bottom half of the screen

WINDOW 20,6,59,12,1 Define a window in 80-column mode in
the center of the screen and clear it.
The window is 12 characters high and
40 characters wide.

PRINT CHRS$(19)CHRS$(19); Reset the window back to full screen
in either 40 or 80-column mode and put
the cursor in top left corner,

YIR - Exclusive~Or function
¥OR (number, number)

The XOR function returns a numeric value equal to the logical XOR of:
two numeric expressions, operating on the binary value of the unsigned
16-bit integers in the range (0 to 65535). .. Numbers outside this

range result in an ‘ILLEGAL QUANTITY’ error.

XOR(4,12) Result is X= 8
X0R(2,12) Result is X=14

X
X

nn

System Specification for C65 ‘ . Fred Bowen March 1, 1981

3.1.4 VARTABLES -

The C64DX uses three types of variables in BASIC:

floating point X
integer X%
string . %8

Normal NUMERIC VARIABLES, also called floating point variables, can
have any from up to nine digits of accuracy. When a number .
becomes larger than nine digits can show, as in +10 or -10, the computer
displays it in scientific notation form, with the number normalized to 1
digit and eight decimal places, followed by the letter E and the power
0f ten by which the number is multiplied. For example, the number
12345678901 is displayed as 1.23456789E+10.

INTEGER VARIABLES can be used when the number is a signed wholé
number from +32767 to =~32768. Integer data is a number like 5, 10, or

-100. Integers take up 1less space than floating point variables,
particularly when used in an array.

STRING VARIABLES are those used for character data, which may
contain numbers, letters, and any other character that the computer
can make. An example of string data is "Commodore C64DX".

VARIABLE NAMES may consist of a single letter, a letter followed by
a number, or two letters, Variable names may be longer than 2
characters, but only the first two are significant. An integer is
specified by using the percent (%) sign after the variable name. String
variables have a dollar sign ($§) after their names.

) EXAMPLES: z
Numeric Variable Names: &, A5, BZ
Integer Variable Names: A%, AS%, BZ%
String Variable Names: AS, ASS, BZS

ARRAYS are lists of variables with the same name, wusing. an extra
number (or numbers) to specify an element of the array. Arrays are
defined using the DIM statement, and may be floating point, integer, or
string variable arrays. The array variable name is. followed by a set of
parentheses () enclosing the number of the variable in the list.

EXAMPLE:
A(7), B2%{1l1), AS$(87)
*
| Arrays can have more than one dimension. A two dimensional array
may be viewed as having rows and columns, with the first number
identifying the row and the second number identifying the column (as if
specifying a certain grid on the map).

EXAMPLE:
A(7,2), B2%(2,3,4), 28(3,2)

RESERVED VARIABLE NAMES are names that are reserved for use by the
computer, and may not be used for another purpeose. These are the variables
DS, DS$, ER, ERRS$, EL, ST, TI, and TIS$. KEYWORDS such as TO and IF or

any other names that contain KEYWORDS, such as RUN, NEW, or LOAD cannot
be used.

ST is a status wvariable for input and output (except normal
screen/keyboard operations}. The value of ST depends on the results of
the last I/0 operation. In general, if the value of ST iss 0 then the
operation was successful.

TI and TIS are variables that relate to the real-time clock built
into the C64DX. The system clock is reset to zero when the system is
powered up or reset, and can be changeqd by the user or a program.

TIS="hh:mm:ss.t™ Allows optional colons to delimit parameters and
. allows input to be abbrieviated {(eg., TI$="h:mm" or
even TI$=""}, defaulting to "00" for unspecified
parameters. 24-hour clock (00:00:00.0 to 23:59:59.9).

TI 24-hour TQD converted into tenths of seconds. .

The value of the clock is lost when the computer is turned off. It
starts at zero when the computer is turned on, and is reset to zero when
the value of the clock exceeds 23:59:59.9 . '

The variable DS reads the disk drive command channel, and returns
the current status of the drive. To get this information in words,
PRINT DS$. These status variables are used after a disk operation, like

DLOAD or DSAVE, to find ocut why the error light on the disk drive
s blinking. : ‘

ER, EL, and ERRS are variables used in error trapping routines.
They are wusually only useful within a Program. ER returns the last
error encountered since the program was RUN.. EL is the line where the
error occurred. ERR$ is a function that allows the program to print one

of the BASIC error messages. PRINT ERR$(ER) prints out the Proper error
message. .

System Specification for C65 Fred Bowen - Marech 1, 1991

3.1.5 OPERATORS -

The BASIC OPERATORS include ARITHMETIC, RELATIONAL, and LOGICAL
OPERATORS. The ARITHMETIC operators include the following signs:

+ addition

subtraction

multiplication

division

raising to a power {(exponentiation)

PN

On a line containing more than one operator, there is a set order
in which operations always occur. = If several operators are used
together, the computer assigns priorities as follows: First,
exponentiation, then multiplication and division, and last, addition and
subtraction. If two operators have the same priority, then calculations
are performed in order from left to right. If these operations are to
occur in a different order, BASIC 10.0 allows giving a calculation a
higher priority by placing parentheses arcund it. Operations enclosed
in parentheses will be calculated before any other operation. Make sure
that the equations have the same number of left and right parentheses,
or a SYNTAX ERROR message is posted when the program is run.

There are also operators for equalities and inequalities, called
RELATIONAL operators. Arithmetic operators always take priority over
relational operators.

is equal to

is less than

is greater than

<= pr =< is legs than or equal to

>= or => is grgater than or equal to
<> or >< is neot equal to

VAL

‘Finally, there are three LOGICAL operators, with lower priority
than both arithmetic and relational operators: : '

AND
OR
NOT

These are most often used to join multiple formulas in IF ... THEN
statements, When they are used with arithmetic operators, they are
evaluated last (i.e., after + and ~). 1If the relationship stated in the
expression is the true the result is assigned an integer of -1 And
if false a of 0 is assigned. There is alsoc an XOR function.

EXAMPLES:
3 ‘
IF A=B AND C=D THEN 100 requires both A=B & C=D to be true
IF A=B OR C=D THEN 100 allows either A=B or C=D to be true
A=35:B=4:PRINT A=B displays 0
A=5:B=4:PRINT A>3 displays -1

PRINT 123 AND 15:PRINT 5 OR 7 displays 11 and 7

System Specification for C65

The following error messages are
messages can also be displayed with the use
error number refers onl
with this function.
automatically displayed.

ERRCR #

o ———

[}

10

11

12
13
14
15

16

3.1.6

ERROR MESSAGES -

Fred Bowen March 1, 1991 -

ERROR NAME

B R L e ——

TOO MANY FILES
FILE OPEN

FILE NOT OPEN
FILE NOT FOUND

DEVICE NOT PRESENT
NQT INPUT FILE

NOT QUTPUT FILE
>»MISSING FILE NAME
ILLEGAL DEVICE NUMBER

NEXT WITHOUT FOR

SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL QUANTITY
OVERFLOW

OUT OF MEMORY

Y to the number assigned to
In direct mode,

3.1.6.1 BASIC ERROR MESSAGES -

displayed by BASIC.

of the ERR${) function. The
the error for use
DOS error messages (DS$) are

Error

They are described in the section after this cne.

DESCRIPTION
There is a limit of 10 files OPEN
at one time.

An attempt was made to open a file ﬁsing
the number of an already open file.

The file number specified in an I/0
Statement must be opened before use,

No file with that name exists on the
specified drive. :

The required I/0 device not available.

An attempt made to read data from a
file that was opened for writing.

An attempt was made to write data to a
file that was opened for reading.

Filename was missing in command.

An attempt was made to use a device
improperly ({SAVE to the screen, etc) .
or an illegal device number was specified.

Either loops are ' nested incorrectly, or
there is a variable name in a NEXT statement
that doesn’t correspond with one in FOR.

A statement is unrecognizable by BASIC.
This could be because of missjing or extra
parenthesis, parameters, delimiters, or a
mispelled keyword.

A RETURN statement was encountered when
no GOSUB statement was active.

A READ statement was encountered with no
DATA left unREAD.

A number used 45 an argument is outside
the allowable range (too big or too small},

The result of a computation is larger than
the largest number allowed (1.701411834E+38)

There is not enough memory for the program,
or variables, or there are too many DO, FOR
or GOSUB statements in effeact.

17
18

19
20
21

22

23

24

25 -

26

27
28

- 29
- 30

31

32
33
34
35
36

37
38

UNDEF'D STATEMENT
BAD SUBSCRIPT

REDIM’D ARRAY
DIVISION BY ZERQ
ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA
FORMULA TOQO COMPLEX

CAN’T CONTINUE

UNDEFINED FUNCTION
VERIFY

LOAD
BREAK -

CAN’T RESUME

LOOF NOT FOUND
LOOP WITHOUT DO
DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

BEND NOT FOQUND

LINE NUMBER TOO LARGE

A line number referenced doesn’t exist.

The program tried to reference an element
of an array out of the range specified by

~a DIM statement, a missing DIM Statement,

or a mistyped function name.
An array can only be DIMensiocned once.
Division by zero is illegal.

Command is only allowed to be used in 3
program. ’

A numeric variable was used in place of a
string variable or vice versa.

An attempt was made to assign more than 255
characters to a string, or enter more than
160 characters from the keyboard, or to

input.more than 255 characters from a file.

The wrong type of data was read from a file.

An expression is too complicated for BASIC
to process all at one time. Break it into
smaller pieces or use fewer parentheses.

The CONT command does not work if the
brogram was not RUN, there was an error,
or a line has .been edited.

An_attempt was made to use a user defined
fuﬁction that was never defined.

The program on disk does not match the
program in memory,

There was a problem loading.

The program was halted.by the STOP key or
a STOP statement.

A RESUME statement was encountered without
a TRAP in effect, or an error occurred in
the trap handler itself.

. [}
The program encountered a DO statement and
cannot find the corresponding LOOP.

. A LOOP was encountered without a DO

statement ‘active.

A command was used in a program that can
only be used in direct mode.

A graphics command was used before a
graphics screen was defined 'and opened.

A BOOT SYS command failed because the
disk could not be read,.

A BEND statement not found for BEGIN.

A line number cannot exceed 64000.

39
40

41

UNRESOLVED REFERENCE
UNIMPLEMENTED COMMAND

FILE READ

Renumber failed because a referenced
line number does not exist.

The given command is not currently
implemented in this computer.

' There was a problem reading data from

a disk file. Similar to LOAD ERROR. .

J‘ System Specification for C65 Fred Bowen : March 1, 1991

| 3.1.6.2 DOS ERROR MESSAGES -

The following error messages are returned through the DS and DS$

. variables. If a disk command is type in direct mode, these messages will
| be displayed automatically. NOTE: DOS message numbers less than 20 are
. advisory and are not necessarily errors. DOS messages may vary slightly
.depending upon the drive model. Refer to your DOS manual for details.

00: CK (no error)
01: - FILES SCRATCHED (not an error)

|
|
l ERROR # DESCRIPTION
|
|
|

The following number (track) tells how many files were
deleted by the scratch command.

02: PARTITION SELECTED (not an error)
The requested disk partition (subdirectory) has been selected.
03: FILES LOCKED '

The requested file(s) have been locked.

04: FILES UNLOCKED
The requested file(s) have been unlocked.

05: FILES RESTORED
The requested file(s) have been recovered (undeleted).

20: READ ERROR (block header not found)
The disk controller is unable to locate the header of the

requested data block. ;aused by an illegal sector number,
or the header has been destroved. ’

21: READ ERROR (no sync character)

' The disk controller in unable to detect a sync mark on the
desired track. Caused by misalignment of the read/write
head, no diskette is Present, or unformatted or improperly
seated diskette. Can also indicate a hardware failure,

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a
data block that was not properly written. This error occurs
in conjunction with the BLOCK commands and indicates an il-
legal track and/or sector request.

»

23: READ ERROR (checksum error in data block)

- This error message indicates that there is an error in one
or more of the data bytes. The data has been read into the
DOS memory, but the checksum over the data is in error,
This message may also indicate grounding problems.

24: READ ERROR (byte decoding error)
The data or header has been read into the DOS memory, but a
hardware error has been created due to an invalid bit pat-
tern in the data byte. This message may also indicate ground-
ing problems.

25: WRITE ERROR (write-verify error)
This message is generated if the controller detects a mis-
match between the written data and the data in the DOS mem-~
ory. -

26: WRITE PROTECT ON

27:
28:

29:

30:

31:

32:

33:
34:
39:

40:
41]:

50:

51:

52:

This message is generated when the controller has been re-
quested to write a data block while the write protect switch
is depressed. '

‘READ ERROR

This message is generated when a checksum error is in the
header.

WRITE ERROR :
This -error message is generated when a data bilock is too long.

DISK ID MISMATCH ' :
This message is generated when the controller has been re-
quested to access a diskette which has not been initialized.
The message can also occur if a diskette has a bad header.

.SYNTAX ERRCR (general syntax) .

The DOS cannot interpret the command sent to the command
channel. Typically, this is caused by an illegal number.of
file names, or patterns are illegally used. For example,
two file names appear on the left side of the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must
start in the first position.

SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)

Pattern matching is invalidly used in the OPEN or SAVE
command.] .

SYNTAX ERROR (no file given) :
The file name was left out of the command or the DOS does
not recognize it as such. :

SYNTAX ERROR (invalid command)
This error may result if the command sent to the command
channel (secondary address 15) is unrecognized by the DOS.

UNIMPLEMENTED COMMAND
Command is not implemented at this time.

FILE READ
The file cannot be read

RECORD NOT PRESENT s

Result of disk reading past the last record through INPUT#
or GET# commands. This message will also occur after posi-
tioning to a record beyond end of file in a relative file.
If the intent is to expand the file by adding the new record
(with a PRINT# command), the error message may be ignored.
INPUT and GET should not be attempted after this error is
detected without first repositioning.

CVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is
truncated, Since the carriage return which is sent as a

record terminator is counted in the record size, this mes~

sage will occur if the total characters in the record
(including the final carriage return) exceeds the defined. size.

FILE TQOQO LARGE
Record position within a relative file indicates that disk
overflow will result.

83:
60:

61:

62:

63:

64:

65:

66:

67:

70:

71:

72:

73:

74:

75;
76:

BIG RELATIVE FILES DISABLED

WRITE FILE OPEN
This message is generated when a write file that has not
been closed is being opened for reading.

FILE NOT OPEN

This message is generated whén a file is being accessed that -
has not been opened in the DOS. Sometimes, in this case, a
message is not generated; the request is simply ignored.

FILE NOT FOUND : .
The requested file does not exist on the indicated drive.

FILE EXISTS

The file name of the file being created already exists on
the diskette.

FILE TYPE MISMATCH

The requested access mode is not poésible using the filetype
given. ,

NQO BLOCK

The sector you tried to allocate with the B-A command was
already allocated., The Track and sector numbers hold the next
higher, available track and sector. If the track number is
2ero, no higher sectors are free (try a lower track & sector).

ILLEGAL TRACK AND SECTOR '
The DOS has attempted to access a track or block which does
not exist in the format being used. This may indicate a prob-
lem reading the pointer of the next block.

ILLEGAL SYSTEM T OR S ?
This special error message indicates an illegal system
track or sector.

NO CHANNEL o ‘

The requested channel is not available, or all channels are
in use. A maximum of five Sequential files may be opened at
one time to the DOS. Direct access channels may have six
opened files, R

DIRECTORY ERROR

' The BAM is corrupted. Try initializing the disk.

DISK FULL) '

Either the blocks on the diskette are used or the directory .
is at its entry limit. DISK FULL is sent when two blocks are
available to allow the current file to be closed before its
data is lost.

DOS MISMATCH (also the powerup message)

Initially given at powerup to identify the drive. On some
drives this message is given as an error to indicate the
media was formatted by an incompatible DOS.

DRIVE NOT READY |
An attempt has been made to access the Floppy Disk Drive

without any diskette present.
FORMAT ERROR '

CONTROLLER ERROR)
The DOS has determined that the hardware is malfunctioning.

17:

78:

79:

SELECTED PARTITION ILLEGAL

An attempt was made to access a partition as a subdirectory,
but it has no directory track or does not meet the criteria
of a directory partition.

DIRECTCRY FULL
There is no more room in the directory sector for another
file entry. Delete a file to make roocm, or change disks.

FILE CORRUPTED . _

The DOS has determined that a file is bad, probably having
bad links. Prepare a new disk and copy the good files to it.
Could be the result of an unsuccessful file recovery.

System Specification for Cé5 Fred Bowen ~ March 1, 1991

3.2 MACHINE LANGUAGE MONTTOR

3.2.1 INTRODUCTION

The MONITOR is a built in machine language Program that. lets)
the user easily write machine language programs. The C64DX MONITOR includes
a machine language monitor, an assembler, and a disassembler.

Machine language programs written using the MONITOR can run by
themselves, or be used as very fast ’subroutines’ for BASIC programs.
Care must be taken to position the assembly language Programs in
memory sc that the BASIC pProgram does not overwrite them and the proper
memory is in context at all times (including during interrupts).

.2.2 MONITOR COMMANDS

3

A ASSEMBLE = Assemble a line of 4502 code

C COMPARE - Compare two sections of memory

D DISASSEMBLE ~ Disassemble a line of 4502 code

F FILL ~ Fill a section of memory with a value

G GO - Start execution at specified address

H HUNT = Find specified data in a section of memory
"L LOAD - Load a file from disk

M MEMORY = Dump a section of memory

24 REGISTERS - Display the contents of the 4502 registers

s SAVE = Save a section of memory to a disk file

T TRANSFER = Transfer memory to another location

v VERIFY - Compare a section of memory with a disk file

X EXIT - Exit Monitor mode

. <period> - assdmbles a line of 6502 code

> <greater-than> - Modifies memoxry

2 <semicolon>» - Modifies register contents

@ <at sign> - Display disk status

s <hex) ~ Display hex, decimal, octal, and binary value

+ <decimal>

& <octal>

% <binary>

System Specification for C&5 _ Fred Bowen . March 1, 1991_

The MONITCOR accepts binary, octal, decimal and hexadecimal

values for any numeric field. Numbers prefixed by one of the
characters $ + & % are interpreted as base 16, 10, 8, or 2 values
respectively. In the absence of a prefix, the base defaults to
hexadecimal always.

The assembler will use the base page form of an instruction wherever:
possible unless the address field is preceeded by extra zeros to force
the absolute form (except binary notation). :

The most significant byte of a 24-bit (3-byte) address field
specifies the memory BANK to implement at the time the given
command is executed,. BANK bytes with the MSB set (i.e., banks
greater than $7F) mean "use the current system configuration"”,
which always includes.the I/0 area. If a BANK is not specified,
BANK 0 is assumed.

BANK 00 internal RAM bank 0 (System, BASIC program)

BANK 01 internal RAM bank 1 (DOS, BASIC vars, color bytes
BANK 02 internal ROM bank 0 (DOS, C64 mode, CHRSETS)

BANK 03 internal ROM bank 1 (Monitor, C65 mode)

BANK 04-07 reserved for future expansion '

BANK 08-7F expansion RAM {graphic screens, RAM disk, eté.)

BANK 80-FF MSB set means current config & I/0

The monitor supports the editor autoscroll feature for memory dumps
{(forwards and backwards) and disassemblies {(forward disassembly only).

To send dump output to a printer, from BASIC open a CMD channel to the
printer and enter the monitor (OPEN 4,4: CMD4: MONITOR). Give the :
dixp command desired; output will be to the printer.

System Specification for C65 Fred Bowen March 1, 1991

3.2.3 MONITOR COMMAND DESCRIPTIONS

COMMAND : : A

PURPOSE: Enter a line of assembly code.

SYNTAX: A <address> <mnemoniq> <operand>

<address> A number indicating the location in memory to
: place the assembled binary code.

<mnemcnic> A 4502 assembly language mnemonic, eg., LDA

<operand> The operand, when required, can be of any

of the legal addressing modes.

A RETURN is used to indicate the end of the assembly line. If
are any errors on the line, a gquestion mark is displayed to
an error, and the cursor moves to the next line. The screen

can be used to correct the error(s) on that line.

As each line is entered, the machine code is written to the specified
address and the line is automatically disassembled.

Base page and relative addresses are calculated for you, and the
appropriate word or byte relative mode selected automatically. To
force an absolute addressing mode, supply leading zeros if necessary.

A 1800 LDX #S$00
A 1802 .

NOTE: A period (.) is equal tg_the ASSEMBLE command.
. 1900 LDA #523

COMMAND : c

PURPOSE: Compare two areas of memory

SYNTAX: C <address 1> <address 2> <address 3>
<address 1> A number indicating the start 7

. of the area of memory to compare against.

<address 2> A number indicating the end
-~ of the area of memory to compare against.
]

<address 3> A number indicating the start
of the other area of memory to compare with.

The following example compares $8000-$9FFF in bank 0 with $8000-S9FFF

in bank 1. Addresses of data that does not match are printed on the
screern.

C 8000 9FFF 18000

COMMAND : D)

PURPOQSE: Disassemble machine code

SYNTAX: D [address_1 [address_2]]

<address> " A number setting the address to start the disassembly,

<address 2> An optional ending address of code to be disassembled.

The output of the disassembly is the same as-that of an assembly,
only preceded by a comma instead of an A or perlod The object
code is also displayed. Relative addresses in the disassembly are
displayed as the 16-bit destination.

A disassembly‘listing can be modified using the screen editor.
any changes to the mnemonic or operand on the screen, then hit the
return. 'This enters the 1line and calls the assembler for
instructions. The object code cannot be modified this way.

A disassembly can be paged. Typing a D <return> causes the next
of disassembly to be displayed. The autoscroll feature works in
forward mode only, because backwards disassembly is not possible
since all 256 opcodes are defined in the 4502 processor

The following example ‘disassembles from ROM bank 3:

D 3F000 3F005

. O3F000 A9 09 LDA #5039

. 03F002 AO FF = LDY #SFF

. O3Fr004 18 CLC
03F005 86 C2 STX $C2

Note that banks wrap to the next higher bank number.

COMMAND : F

PURPOSE: Fill a range of locations with a specified byte.
SYNTAX: F <address 1> <address 2> <byte>

<address 1> The first location to £ill with the <byte>.
<address 2> The last location to £fill with the <byte>.
<byte> The byte to £ill with

T2s command is useful for initializing data structures or any
other RAM area.

F 00600 Q07FF QO

Fills memory locatiens from $0600 to SO7FF (RAM-0) with $00.

Note that banks wrap to the next higher bank number. The maximum
area that can be filled at one time is 64K, limited by the DMA
device. . .

COMMAND: G

PURPOSE: : Perform a JMP to a specified address

SYNTAX: G <address>

<address> The address where execution is to start. When the

address is not specified, execution begins at the
current PC. (The current PC can be viewed or changed
with the R command.}

The GO command loads the processor’s registers (displayable by the R
command) and performs a JMP to the specified starting address.
Caution is recommended in using the GO command. To return to MONITOR
mode after performing a GO command, a BRK instruction must end the
called routine. Also, the BANK specified must be able to handle
interrupts (note that BANK bytes less than 580 do NOT include the
operating system or 1/0 space). .

G FFC800

JuMPs to add:ess $C800 in bank S$FF (system configuration).

COMMAND : E

PURPQSE: Hunt through memory within a specified range for all
occurences of a set of bytes. . -

SYNTAX: H <address 1> <address 2> <data>

<address 1> Address to start at

<address 2> Last address

<data> Data to search for. May be a number, sequence of

numbers, or a PETSCII string.
H 02000 OFFFF 46 52 45 44
Hunts for the series éf bytes 346, $52, $45, $44 in memory bank 0
beginning at address $2000 and ending at $FFFF. The addresses of
matches is displayed.
H 0200 O0FFFF ‘FRED

Hunts for the PETSCII string following an apostrophe.
Note that banks wrap to the next higher bank number.

COMMAND ; L

PURPQOSE: Load a file from disk.

SYNTAX; L <"filename"> [,device [,load_address]]
<"filename™> Is a filename in quotes. .

{device] Is a number igdicating the device to load from.

fload_address] Optional load address. 1If notrgiven, the file is

loaded into memory at the 16-bit address stored on
disk (always RAM bank Q).

The LOAD command causes a file to be loaded into memory. If the load .
address (including BANK) is given, the data is placed there. Otherwise
the file is loaded into RAM bank 0 at the 16-bit load address specified
by the first two bytes read from the PRG (program) type file. An error
occurs if a load overflow the specified bank.

L "filename"

Loads "filename” from default system drive into RAM bank 0 at the
address read from the file,

L "filename",+10,80000

Loads "filename" from drive 10 (notice you must specify decimal for
the drive number, or use hex equivalent) into expansion memory bank
8 at address $0000. Note that spaces between parameters after the
filename are not permitted,

COMMAND ; M

PURPOSE: Dump a section of memory in hex and PETSCII.

SYNTAX: M {address_l (address_2}]

{address_1] Starting address of memoary dump. If omitted, one page

is displayed starting from the last address used. :

{address;Z] Ending address of memory dump. If omitted, one page

is displayed startinglat address_1.

Memory dump width is sized to 40 or 80 columns, depending upon the
text screen width. All data is dlsplayed in hexadecimal and followed
by a PETSCII interpretation of the data in reverse field (non-printing
characters appear as periods).

The autoscroll keys will scroll the dump forwards or backwards. Paging
is also possible by typing M<return>. :

The hex field of dump can be edited, and memory will be updated after
a <return> is typed on the edited line.

M 29000 2500C

>029000 3C 66 6E 6E 60 62 3C 00 :<FNN-B<.
>029008 46 41 49 54 20 4C 35 58 :FAIT LUX

COMMAND : R

PURPOSE: Display "shadow" 4502 registers. The PC (address),
SR (status), A,X,¥,2 registers, and SP (stack pointer)
are displayed.

SYNTAX: R .

R :
PC SR AC XR YR SP
; BAl234 00 00 00 0C FB

The address field contains the 8-bit bank plus the l6-bit segment
address. The register dump can be edited by changing any field and
pressing return. The data is used by the .G (JMP) and J {JSR) commands.

COMMAND ; S :

PURPQSE: Save a section of memory in a disk file.
SNTAX: S <"filename">,<device>, <address 1>,<address 2>
<"filename™> Is a filename in quotes.

<address 1> Starting address of memory to be saved.
<address 2> Ending address PLUS ONE of memory to be saved.

The SAVE command creates a PRG (program) type file and copies data
into it from the specified memory area., All parameters are required.

S "filename",8,A0000,AFFFF I

Saves expansion bank A in "filename" on drive 8 (you must specify
decimal for the drive number, or use hex equivalent). The last byte
at $FFFF will not be saved. Note that spaces between parameters after
the filename are not permitted, The l6~bit segment address is saved
as the first two bytes of the file, but the BANK address is not saved

The BANK wraps automatically to the next higher bank number, but note
that LOAD is restricted to one bank, 64K bytes maximum.

COMMAND : T , -

PURPOSE: * Transfer (copy) memory from one memory area to ancther.
SYNTAX: T <address 1> <address 2> <address 3>

<address 1> Starting address of data to be copied.

<address 2> Ending address of data to be copied.

<address 3> Starting address of new location to copy data to.

Data can be copied forwards or backwards to any location, even

within the source range (eg., shift data up or down one byte) withonut
any problem. An automatic compare is performed for each byte, and
mismatches displayed on the screen.

Because of the compare feature, it’s not recommended'you use the T
command to c¢opy data into write-only registers (the palette, for
example). It works, but all the compares will fail. .

’ T 32000 3BFFF 82000

Copies BASIC ROM area to expansion RAM,

COMMAND v

PURPQSE: Verify (compare) a disk file with the memory contents.
SYNTAX: V <"filename"> [,device [, load_address)]

<"filename"> Is a filename in quotes.

[device] Is a number indicating the device the file is on.

{load address] Optional load address. If not given, the file is
compared to memory at the 16-bift address stored on
disk (always RAM bank 0).

The Verify command causes a file to be read and compared to memory.
If the load address {including BANK) is given, the data read is
compared to data there. Otherwise the data read is compared to RAM
bank 0 at the 16-bit load address specified by the first two bytes
of the PRG (program) type file. If there is a mismatch, the message
'VERIFYING ERROR’ is displayel. If the data matches, nothing is
displayed. An error occurs if the compare address overflows the
specified bank.

V "filename"
Compares "filename" from the default system drive to RAM bank 0 at the
address read from the file. _

V "filename™,+10, 80000

Comapres "filename™ from drive 10 (notice you must specify decimal for
the drive number, or use hex equivalent) to expansion memory bank

8 at address $0000. Note that spaces between parameters’ after the
filename are not permitted.

COMMAND : X

PURPOSE: Exit to BASIC

SYNTAX: X

COMMAND : > (greater than)

PURPOSE: Pokes data (1 to 16 bytes) into memory
SYNTAX: > <address> (byte}..,

<address> Address to start “poking" or displaying
{byte] Data to be "poked". If not given, nothing is

changed and the memory at that location is "peeked”,
Successive bytes are poked into successive locations.

COMMAND ; Q (at sign)

PURPOSE: Disk operation: send command, display directory, status
SYNTAX: @ [device]l [,command]

{device] Disk device number

[command] Optional command (see DOS manual for épecific commands)

This command can be used to read a drive’s status message, send
a drive a DOS command, or display a disk directory.

Q displays status of default system drlve
Q9 displays status of drive 9

@+10 or @A displays status of drive 10

e,s displays directory of default drive
@9,5 displays status of drive 9

@,$0:*=SEQ displays all SEQ type files

@,S0:FILE sends command to delete file "FILE"

- System Specification for C65 Fred Bowen March 1, 1991

3.3 EDITOR

3.3.1 EDITOR ESCAPE SEQUENCES

This section contains a definition of the escape sequences that are present in

.the C64DX and a brief description of what each does.

ESCape sequences are given by hitting the <ESCAPE> key and then another key.
In PRINT strings, escape sequences are given by printing the escape character
CHR$(27) followed by another character, In either case, the "other" charactex
is defined as one of the followings: . ‘

KEY FUNCTION

Clear from cursor to end of screen

Enable auto-insert mode

Set bottom ¢of screen window at cursor position
Disable auto-insert mode (set overwrite mode)
Delete current line .

Set cursor to non-flashing mode

Set curser to flashing mode

Enable bell (control-G)

Disable bell

Insert line

Move to start of current line

Move to end of current line

Enable scrolling

Disable scrolling

Normal screen fields [not implemented on C64DX)
Cancel insert, quote, reverse, underline & flash modes
Erase from cursor _to start of current line
Erase from cursor’to end of current line

Set screen to reverse video [not implemented on C64DX]
Set bold attribute (VIC-III colors 16-31)

Set top of screen window at cursor postion
Unset bold attibute

Scroll up

Scroll down

Swap 40/80 column display output device

. Set default tab stops (8 spaces)

Clear all tab stops »

Set monochrome display (disable attributes)
Cancel insert, quote, rvs, ul & flash modes
Set color display (enable attributes)

N ECARNIONOZEIHNRGHROMBOAOAN Y@

System Specification for C65 Fred Bowen March 1, 1991

3.3.2 EDITOR CONTROL CODES

This section contains a definition of the control codes that are present in
the C64DX and a brief description of what each does.

Control codes are given by pressing the <CTIRL>key at the same time as another
key. 1In PRINT strings, control codes are given by printing the control
character with the CHR$() function. Control codes appear within quoted strings
as reverse field characters. 1In any case, the control characters are:

CHRS KEYBOARD

VALUE CONTROL FUNCTION

2 B Underline on

7 G Bell tone

9 I Forward TAB

10 J Line feed

11 K Disable case change <shift>C= key (was code 9)
12 L Enable case change <shift>C= key {(was code 8)
14 N Set display upper/lower case mode

15 0 Flash on

17 0 Cursor down

18 R Reverse on

19 5 Home cursor

20 T Delete previous character

21 U Backup word

23 W Advance word

24 X Tab set/clear

26 Z Backup TAR

27 [Escape character

29] Cursor right

System Specification for C65
Shifted codes

130
142
1143
145
146
147
148
157

Color codes

T — il —— s e

Fred Bowen March 1, 1991

Underiine off

Set uppercase/graphic mode
Flash off

Cursor up

Reverse mode off

Clear screen

Insert one character
Cursor left

28
30
31
129
144
149
150
151
152
153
154
155
156
158
159

Function keys

T ke iy . S o

white

red

green

blue

orange
black

brown _
light red
light gray
medium gray
light green
light blue
dark gray
purple
vellow

cyan

e e S S S o A o S S T —— " i

o o o R i s . i . T s . . S O o . . B s o it

System Specification for C6&5 : Fred Bowen . March 1, 1991

3.4 KERNEL

3.4.1 C64DX KERNEL ENTRY POINTS

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL ***]

Where the default.indirect vectors point to:

FF09 ' nirqg : IRQ handler

FFOB monitor brk :BRK handler (Monitor)
FFOD nnmi sNMI handler

FFOF nopen , sopen

FF1l nclose :close

FF13 nchkin ;chkin

FF1l5 nckout ; ckout

FF17 nclrch ;clrch

FF19 nbasin sbasin

FF1B nbhsout +bsout

FF1D nstop ;stop key scan

FF1F ngetin ;getin

FF21 nclall - sclall

FF23 monitor parser ;monitor command parser
FF25 nload ;load

FF27 nsave :save

Fr29 talk ;:Low level serial bus routines

FF2B8 listen
FF2D talksa
FEZFE second
FF31 acptr
FF33 ciout
FF35 untalk
EX37 unlisten

FF39 DOS_talk ;newDOS routines
FF3B DOS_listen

FF3D DOS_talksa

FF3F DOS_second - ,
FF41l DOS_acptr e
FF43 DOS_ciout

FF45 DOS_untalk

FF47 DOS_unlisten

FF49 Get_DOS
FF4B Leave_DOS

FF4D jmp spin_spout :setup fast serial port for input or output

FFS0 jmp close_all ;close all logical files for a given device
FF53 jmp c64mode ;reconfigure system as a c/64 (no return!)
-FF56 jmp monitor call ;map in Monitor & call it

FF59 jmp bootsys ;boot alternate system from disk

FF5C jmp phoenix ;call cold start routines, disk boot loader
FESF jmp lkupla ;search tables for given la

FF62 jmp lkupsa :search tables for given sa

FF65 jmp swapper ;swap to alternatée display device

FF68 jmp pfkey ;program function key -

FF6B imp setbnk :set bank for load/save/verify/open

FEF6E jmp Jjsr_far :JSR to any bank, RTS to calling bank

FF71 jmp jmp_far ;JMP to any bank ,

FF74 jmp lda far ;LDA (X),Y from bank 2

FF77 jmp sta_far sSTA (X),Y to bank Z

FETA jmp cmp_far CMP (X)), Y to bank 2

FF7D
EF80

FF81
Fr84
FF87
FF8A
FF8D
FF90
FF93
FF96
FE99
FFOC
FESF

"FEFA2

FEAS
FFAS8
FFAB
FFAE
FFB1
FEB4
FFBY7
FEFBA
FEBD
FFCO
FFC3

FFCE -

FFC9
FFCC
FFCF
FFD2
FFD5
FFD8
FFDB
FEFDE
FFEL
FFE4
FFE7
FFEA
FFED
FFFO
FFF3

FFF6
FFF8

FEFA
FEFFC
FETE

jmp primm ;print immediate (always JSR to this routine!)
<FF> ;release number of C65 Kernel ($FF=not released)
jmp cint ;init screen editor & display chips

jmp ioinit ;init I/0 devices (ports, timers, etc.)
jmp ramtas sinitialize RAM for system

jmp restor ;restore vectors to initial system

jmp vector :change vectors for user

jmp setmsg ;control o.s. messages

jmp (isecond) :send sa after listen

jmp (italksa) :send sa after talk

jmp memtop ;set/read top of memory

imp membot ;set/read bottom of memory

jmp key ;scan keyboard

jmp settmo ;old IEEE set timeout value

Jmp {iacptr) ;read a byte from active serial bus talker
jmp {iciout) ;send a byte to active serial bus listener
jmp {iuntalk) ;command serial bus device to stop talking
jmp {(iunlisten) ;command serial bus device to stop listening
jrp (ilisten) - scommand serial bus device to listen

jmp (italk) ;command. serial bus device to talk

jmp readss :return I/0 status byte

jmp setlfs :set la, fa, sa .

jrmp setnam ;set length and £n adr

jmp (iopen) ropen logical file

Jmp (iclose) ;close logical file

jmp (ichkin) ;open channel in

jmp (ickout) ;open channel out

jmp (iclrch) ;close I/0 channel

jmp (ibasin) ;input from channel

jmp {ibsout) ;output to channel

jmp lead ;locad from file

jmp save :save _to file

jmp Set Time ;set Internal clock

jmp Read Time ;read internal clock

jmp (istop) :scan stop key

jmp (igetin) ;get char from queune

jmp (iclall) ;clear all logical files (see close all)
jmp ScanStopKey ;(was increment clock) & scan stop key

jmp scrorg ;return current screen window size

jmp plot rread/set x,y coord

jmp iobase ;return I/0 base

cb5mode ;C64/C65 interface

cbdmode

nmi, ;processor hardware vectors !

reset .

irqg_kernel

' System Specification for €65

"Fred Bowen March 1, 199}

3.4.2 C64DX EDITOR JUMP TABLE

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL *xx]

-EQ00
EQO03
EO0O6
E009
EQQC
EQQF
EQ12
EQ15
EQ18
EQ1B
EQlE
E021
EQZ24
EQ27
EQZ2a
EQ2D
EQ30

cint

disply

ip2

loop5

print

scrorg
kevboard scan
repeat
plot

mouse cmd
escape
keyset
editor_irg
palette init
swap

window
cursecr

;initialize editor & screen ‘
+display character in .a, color in .x
;get a key from IRQ buffer inte .a

;get a chr from screen line into .a
:print character in .a C
;get size of window (rows,cols) in .x, .y
;scan keyboard subroutine 0
;repeat key logic & CKIT2 to store decoded key
sread or set (.c) cursor position in .x, .y
;install/remove mouse driver

sexecute escape function using chr in .a
;iredefine a programmable function key

;IRQ entry

rinitialize VIC palette

740/80 mode change _

;set top left or bottom rxight (.c) of window
:turn on or off (.c) soft cursor

System Specification for C§5

3.4.3 C64DX BASIC JUMP TABLE

Fred Bowen March 1, 1991

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL **%*)

Format Conversions

TF00 ayint
TF03 givayf
TE0Q6 - fout
7F09 val 1
TF0C getadr
TFQF floatc

Math Functions

TJF12 fsub
TF15 fsubt
TF18 fadd
7F1B faddt
IFLE : fmulr
TF21 fraultt
TF24 fdiv
E27 fdivt
TE2A leg
TEZD int
7F30 sqr
TE33 negop
TF36 fpwr
7F38 fpwzrt
TE3C exp
TE3F cos
TF42 sin
TF45 tan
7F48 atn
Tr4B round
TF4E abs
"7F51 sign
TF54 “fcomp
TE57 rnd 0 -
Movement
TFSA conupk
TFSD romupk
TF6e0 movfrm
75763 - movEm
TF66 movmE
TF69 movEa
TEF6C movaf
TESF run
TJE72 runc
TETS clear
TF78 new
7F7B link_program
1F7E crunch
TF81 FindLine
TF84 " newstt
TE87 eval
TE8A frmevl
788D Tun_a_program
TF90 setexc
7F93 linget

TF96 garba?2

;convert floating point to integer
;convert integer to floating point .
rconvert floating peoint to ASCII string
;convert ASCII string to floating .point
;convert floating point to an address
;convert address to floating point

:MEM
;ARG
;MEM
: ARG
: MEM
: ARG
;s MEM
;s ARG

S B BN A OO |

FACC
FACC
FACC
FACC
FACC -
FACC
FACC
FACC

;compute natural log of FACC
;perform BASIC INT() on FACC
;compute square root of FACC
inegate FACC

:raise ARG to the MEM power
;raise ARG to the FACC power
;compute EXP of FACC
;compute COS of FACC.
scomptite SIN of FACC
;compute TAN of FACC
;compute ATN of FACC

zround FACC

;absolute value of FACC
:test sign of FACC

scompare FACC with MEM
igenerate random floating point number

;smove
sMOove
s Move

smove

smove
;sove
;smove

RAM MEM to ARG

ROM MEM to ARG :
RAM MEM to FACC 4
ROM MEM to FACC

FACC to MEM

ARG to FACC

FACC to ARG

TF99
7F3C
TESF
TFA2
TFAS
TFA8
7FAR
TFAE
TFBl

Graphic

8000
8002
8004
8006
8008
800A
800C
800E
8010
8012
8014
8016
8018
801A
801cC
801E
8020
8022
8024

8026

8028
802Aa
gozc
802E

- execute_a_line

chrget
chrgot
chkcon
£rmnum
getadr
getnur
getbyt
plsv

Jump Table

init

parse

start
screendef
screenopen
screenclose
screenclear
screen
setpen
setpalette
setdmode
setdpat
line

box

circle
polygon
ellipse
viewpclr
copy

cut

paste

load

char
viewportdef

;Graphics BASIC init (same as command=0)
:Graphics BASIC command parser

commands

wo-tabhdlwhdEHO

e e Wa e g Mg e e Ne wuy

wp Wwa Wy Ny
b 4 e S
BWNHO

;15

ws wg
bt
o

B b
O

:21

System Specification for C§5

Fred Bowen March 1, 1991

3.4.4 C64DX SOFT VECTORS

(*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL ***]

BASIC indirect vectors

02F7

02FC
02FE
0300
0302
0304
0306
0308
030
030C
030E
0310

Kernel indirect vectors

02FA

0312
0314
0316
0318
031a
031c
031E
0320
0322
0324
0326
0328
032a
032¢C
032E
0330
0332

Editor indirect vectors

0334
0336
0338
033a
033C
033E
33E
340
342
344
346
348

jmp USR

esc_fn_vec
graphic_vector
ierror
imain
icrnch
igplop
igone
ieval
iesclk
iesepr
iescex

iAutoScroll

itime
iirg
ibrk
inmi
iopen
iclose
ichkin
ickout
iclreh
ibasin
ibsout
istop
igetin
iclall
exmon
iload
isave

ctlvec
shfvec

T escvec

keyvec
keychk
decode

;USR vector (must be set by application)

:Escape Function vector

:Graphic Kernel vector .
error (output error in .x)
main (system direct loop)
crunch (tokenization routine)
list (char list)

gone (char dispatch)

eval (symbol evaluation)
:escape token crunch

:escape token list

;escape token execute

sindirect
;indirect
;indirect
sindirect
;indirect
:indirect

;AutoScroll used by BASIC, Monitor, Editor-

¢ {unused)
;IRQ
;: BRK
: NMI

sMonitor command indirect

to routings & tables

:'contrl’
;' shiftad’

svectors to 6

= Mode
Mode
Mode
Mode
Mode
Mode

A n bWt

{ I T I O

characters !
characters '

:'escape’ characters

;post keyscan, pre-evaluation of keys
;post-evaluation, pre-buffering of keys

keyboard matrix decode tables
normal keys

<SHIFT> keys

<C=> keys

<CONTROL> keys

<CAPS LOCK> keys

<ALT> keys -

System Specification for C65 Fred Bowen ‘March 1, 1991

3.4.5 KERNEL DOCUMENTATION

C64DX KERNEL JUMP TABLE

(PRELIMINARY)

by

Fred Bowen

F

The KERNEL is the ROM resident operating system of the Commodore
64DX computer. All input, output, and memory management is
controlled by the KERNEL. The KERNEL JUMP TABLE provides a
standardized interface to many useful routines within the
operating system. Application preogrammers ‘are encouraged to
utilize the JUMP TABLEs to simplify their operations and
guarantee their functionality should hardware or . software
modifications to the system become necessary.

System Specification for C65 Fred Bowen

C64DX KERNEL JUMP TABLE
DESCRIPTIONS

B. CBM STANDARD KERNEL CALLS

March 1,

Page 13

preliminary

The following system calls comprise the set of standard
class of machines,

CBM system c¢alls for the
including the PLUS-4. Several
function somewhat differently
different setups. This was
specific features of the sy

$FF) must be in context at the

c64 .

of the

calls, however,

or may require slightly
necessary to

notably the 40/80
column windowing Editor and banked memory facilities. As

with all Kernel calls, the system configuration (BANK

stem,

time

0of the

accomodate

call.

1991

System Specification for C65 Fred Bowen . March 1, 1991

C64DX KERNEIL JUMP TARBLE Page 1
DESCRIPTIONS preliminary
1. SFF81 CINT :;initialize screen editor

.Preparation:
Registers: none

Memory: system map

Flags: ~ none
Calls: . none
Results:

Registers: .A used

X used
.Y used
Memory: init Editor RaM
init Editor I/O
Flags: none
Example:
SEI _
JSR SFF81 ;initialize screen editor
CLI :
CINT is the Editor's initialization routine. Editor
Andirect vectors installed, programmable key

definitions assigned, and the ASC/DIN key scanned for
NATIONAL keyboard/charset determination. CINT sets

-the VIC bank, VIC nybble bank, enables the character

ROM, resets SID volume, and clears the screen.

The cnly thing it does not do that pertains to the Editor
is I/0 initialization,

which is is needed for IRQs ({(keyscan, VIC cursor
blink, split screen modes), key lines, screen
background colors, etc. {see IOINIT). Because CINT
updates Editor indirect vectors that are usedq during

IRQ processing, you should disable IRQs prior to
calling it. CINT utilizes the status byte INIT_ STATUS

as follows: .

$1104 bit 6

Q0 --> Full initialization,
(set INIT_STATUS bit 6)

1 --> Partial initialization.
(not keymatrix pointers)
(not program key definitions)

System Specification for C6&5 Fred Bowen March 1, 1991
C64DX KERNEL JUMP TABLE | . Page 2 |
DESCRIPTIONS preliminary

2. 3FF84 ICINIT ;init I/Q devices

Preparation:

Registers: none

- Memory: system map
Flags: none
Calls: none .
Results:
Registers: .A used
.X used
.Y used
Memory: initialize I/0
Flags: none
Example:
SEI
JSR $i#84 ;initialize system I/O

CLI

IOINIT is perhaps the major function of the Reset
handler. It initializes both CIA's (timers, keyboard,
serial port, user port), the 4510 port, the VIC chip,
The UART and the DOS, It distinguishes a PAL system
from an NTSC one and sets PALCNT if PAL. The system IRQ
source, the VIC raster, is started {(pending IRQs are
cleared). IOINIT utilizes the status byte INIT_STATUS

as follows: :

$1104 bit 7 = 0 --> Full initializatibn.
(set INIT_STATUS bit 7)

=1 =~=-> Partial initialization.r
You should be sure IRQs are disabled before calling

IOINIT to avoid interrupts while the various I/0
devices are being initialized.

System Specification for €65 Fred Bowen ‘March 1, 1991
" C64DX KERNEL JUMP TABLE Page 3
DESCRIPTIONS . _ preliminary

3. $FF87 RAMTAS :init RAM and buffers

~ Preparation:

Registers: none

Memory: . system map
Flags: none
Calls: . none
Results:
Registers: .A used
.X used
.Y used
Memory: initializes RAM
Flags: none
Exanmple:

JSR SF¥F87 ;initialize system RAM

} RAMTAS clears all base page RAM, allocates the
sets pointers to the top
and bottom of system RAM and points the
SYSTEM VECTOR to BASIC cold start.
Lastly it sets a flag, DEJAVU, to indicate to
other routines that system RAM has been initialized
and that the SYSTEM VECTOR is wvalid. It should be
noted that the C64DX RAMTAS routine does NOT in any
way test RAM,

System Specification for C65 Fred Bowen : March 1, 1991

C64DX KERNEL JUMP TABLE - _ | Page 4
DESCRIPTIONS preliminary
4. SFF8A RESTOR ;init Kernel indirects

Preparation:

Registers: none

Memory{ ; system map
Flags: none
Calls: none
Results:
Registers: .A used
.X used
.Y used
Memory: kernel indirects restored
Flags: ‘none
Example:
SEI
JSR SERFSA ;restore kernel indirects
CLI

RESTOR restores the default values of all the Kernel
indirect vectors from the Kernel ROM list. It does
NOT affect any other vectors, such as those used by
the Editdr (see CINT) and BASIC. Because it is
possible for an interrupt (IRQ' or NMI) to occur
during the updating of the interrupt indirect
vectors, you should disable interrupts prior to
calling RESTOR. See also the VECTOR call.

System Specification for C65 ' Fred Bowen . March 1,
C64DX KERNEL JUMP TABLE ~ | Page 5
DESCRIPTIONS : : preliminary

5. SFF8D VECTOR ;init or copy indirects
Preparation:

Registers: .X = adr (low) of user list

Y adr (high) of user. list
Memory: system map
. Flags: .C = 0 --> load Kernel vectors
: .C =1 --> copy Kernel vectors
Calls: -none
Results:
Registers: .A used
.Y used
Memory: as pef call
Flags: none
Example:
LDX #save_lo
LDY #save hi
? - - SEC

JSR SFF87 ;copy indirects to ’save’

VECTOR reads or writes the Kernel RAM indirect
vectors. - Calling VECTOR with the carry status set
stores the current contents of the indirect vectors
to the RAM address passed in the .X and .Y registers
(to the current RAM bank). Calling VECTOR with the
‘ecarry status clear updates the Kernel indirect
vectors from the user list passed in the .X and .Y
registers (from the current RAM bank). Inberrupts
(IRQ and NMI) should be disabled when updating the
“indirects. See also the RESTOR call, '

1991

System Specification for C65 Fred Bowen March 1,
'C64DX KERNEL JUMP TABLE - _ Page 6
DESCRIPTIONS : preliminary

6. SFF90 SETMSG tkernel messages on/off
Preparation:

Registers: .A = message control

Memory: system map

Flags: none

Calls: none
Results:

Registers: none

Memory: MSGFLG updated
Flags: none

Example:
LDA #0

JSR S$FFa0 :turn—OFF all Kernel messages

SETMSG updates the Kernel message flag byte MSGFLG
which determines whether system error and/or
control messages will be displayed. BASIC normally
disables error messages always and disables control
messages in ‘run’ mode. Note that the Kernel error
messages are not the verbose ones printed by BASIC,
but simply the ‘I/0 ERROR #’ message that you see
when in the Monitor, for example. Examples aof Kernel
control messages are ‘LOADING’ and ‘FOUND’.

The MSGFLG control bits are:

MSGFLG bit

7 1 ==> enable CONTROL messages
bit 6

1 ~-> enable ERROR mesdages

1991

System Specification for C65

C64DX KERNEL JUMP TABLE
DESCRIPTIONS

Fred Bowen

March 1,

Page 7
preliminary

7. $FF93 SECND ;serial: send SA after LISTN

Preparaﬁion:

Registers: .A = SA (secondary address)

Memory: = system map

Flags: none

Calls: LISTN
Resulté:

Registers: .A used

Memory: STATUS (590Q)

Flags: . none
Example:

LDA #8 ’ ’

JSR SFFB1 :LISTN device 8

LDA #15 :

JSR SFF93 ;pass it SA #15

SECND is a low-level serial routine used to send a
secondary address (SA} te a LISTNing device (see
LISTN Kernel call). An SA is usually used to provide
setup information to a device before the actual data
I1/0 operation begins. Attention is released after a
call to SECND. SECND is not used to send an SA to a
TALKing device (see TKSA). (Most applications should

use the higher 1level I/0 routines; see OPEN and
CKOUT) . :

1981

System Specification for C65 Fred Bowen March 1, 1991
C64DX KERNEL JUMP TABLE Page 8
DESCRIPTIONS ' © preliminary

8. SEFF96 TKSA ;serial: send SA after TATK

Preparation:

Registers: .A = SA (secondary address)

Memory: system map

Flags: none

Calls: TALK
Results:

Registers: .A used

Memory: STATUS (590)

Flags: hone
Example:

LDA #8

JSR $SFFB4 : TALK device 8

LDA #15

JSR $.¥93 :pass it SA #15

TKSA is a low~level serial routine used to send a
secondary address (SA) to a device commanded to TALK
{see TALK Kernel call). An SA is usually wused to
provide setup information to a device before the
actual data I/Q operation begins. (Most applications
should use the higher level I/0 routines: see OPEN
and CHXIN). '

System Specification for C65 _ Fred Bowen March 1,
Ce4DX KERNEL JUMP TABLE Page 9
DESCRIPTIONS preliminary

9. SFF9% MEMTOP ;set/read top of system RAM
Preparation:

Registers: .X l1sb of MEMSIZ

o

.Y = msh of MEMSIZ
Memory: ' system map
Flags: .C =0 --> set top of memory
.C =1 --> read top of memory
Calls: none
Results:
Registers: .X = lsb of MEMSIZ
.Y = msb of MEMSIZ
Memory: MEMSIZ
Flags: none
Example:
SEC '
) JSR SFF99 rget top of user RAM
Y DEY .
CLC

JSR $FF99 :lower it 1 block

MEMTOP is used to read or set the top of system RAM,

pointed to by MEMSIZ. This call ‘is included in
the C64DX for completeness, but neither the Kernel nor
BASIC wutilize MEMTOP as it has little meaning in the

1991

banked memory erivironment of the computer (even the

RS5-232 buffers are permanently allocated).
None-the-less, set the carry status to load MEMSIZ
into .X and .Y, and clear it to update the pointer
from .X and .Y. Note that MEMSIZ references only
system RAM. The Kernel initially sets MEMSIZ

.to $FFOQO. '

System Specification for C&5 ' Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 1.0
DESCRIPTIONS preliminary
10. SFF9C MEMBOT :set/read bottom of system RAM
Preparation:
Registers: .X = lsb of MEMSTR
.Y = msb of MEMSTR
Memory: . system map
Flags: .C =0 --> set bot of memory
.C =1 --> read bot of memory
Calls: none

Results:

Registers: .X lsbh of MEMSTR

. 4 msb of MEMSTR
Memory: MEMSTR
Flags: none
Example:
sec ?
JSR SFFIC ;get bottom of user RAM O
INY : '
CLC :

JSR SFF3C :raise it 1 block

MEMBOT is used to read or set the bhottom of system
RAM, pointed to by MEMSTR. This call is
included in the C64DX for completeness, but neither
the Kernel nor BASIC utilize MEMBOT as it has little
meaning in the banked memory environment of the C64DX.
None-the-less, set the carry status to lodd MEMSTR
into .X and .Y, and clear it to - update ' the pointer
from .X and .Y. Note that MEMSTR references only
system RAM. The Kernel initially sets. MEMSTR

to $2000 (BASIC text starts here).

—

System Specification for C65 Fred Bowen ‘March 1, 1991

C64DX KERNEL JUMP TABLE Page 11
DESCRIPTIONS preliminary
11. SEF9 KEY ;scan keyboard

Preparation:

Registers: none

Memory: system map
Flags: " none
- Calls: none -
Results:

Registers: none

Memory: keyboard buffer
keyboard flags
Flags: none
Example:;

JSR $FFYF :;scan the keyboard

KEY is an Editor routine which scans the entire
keyboard. It distinguishes between shifted and unshifted
? keys, control keys, and programmable
keys, setting keyboard status bytes and managing the
keyboard buffer. After decoding the key, KEY will
manage such features as toggling cases, pauses or
delays, and key repeats. It is normally called by the
operating system during the 60Hz IRQ processing. Upon
conclusion, KEY leaves the.keyboard hardware driving
the key-line on which the STOP key is located.

System Specification for CE5 Fred Bowen

' C64DX KERNEL JUMP TABLE
DESCRIPTZIONS

March i, 1991

Page 1l1lA
preliminary

There are two indirect RAM jumps encountered during a
keyscan: KEYVEC ($33A) and KEYCHK ($33C). KEYVEC
(alias KEYLOG) is taken whenever a key depression is

discovered, before the key in .A has been decoded.

KEYCHK is taken after the key has been decoded, just
before putting it into the key buffer. KEYCHK carries
the ASCII character in .A, the keycode in .¥; and the
shift-key status in .X.

The keyboard decode matrices are addressed vig

indirect RAM vectors as well, located at DECODE.

System Specification for C65 Fred Bowen’ : March 1, 1991

C64DX KERNEL JUMP TABLE Page 12
DESCRIPTIONS preliminary
12. SFFA2 SETTMO : (reserved)
Preparation:

Registers: none

Memory: system map

Flags: none

Calls: none
Results:

Registers: none

Memory: TIMOUT

Flags: none
Example:

LDA #value

JSR $FFA2 ;update TIMOUT byte

SETTMO is unused in the C64DX and is included for

2 compatibility and completeness. It is used in the C64
by the IEEE communication cartridge to disable I/0
timeouts.

System Specification for C§5 Fred Bowen Mafch 1, 1991

C64DX KERNEL JUMP TABLE Page 13
DESCRIPTIONS : preliminary
13. $FFAS ACPTR ;serial: byte input.
Preparation:

Registers: none

Memory: | system map
Flags: none
Calls: TALK

TKSA (if necessary)

Results:

Registers: .A = data byte

Memory: STATUS ($90)
'Flags: none
Example:

JSR $FFAS ;input a byte from serial bus
STa da;a

ACPTR is a low-level serial I/0 utility to accept a
single byte from the current serial bus TALKer using
full handshaking. To prepare for this routine a
device must first have been established as a TALKer
(see TALK) and passed a secondary address if
necessary (see TKSA). The byte is returned in .A.
(Most applications should use the higher 1level 1I/0
routines; see BASIN and GETIN). '

System Specification for €65 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 14
DESCRIPTIONS . preliminary
14. SFFA8 CIOUT ;serial: byte output
Preparation:

Regiéters: .A = data byte

Memory: _ system map
Flags: none
Calls: LISTN

SECND {ifrnecessary)

Results:
Registers: .A used
Mémory: STATUS (590}
Flags: nene
Example:
LDA data

JSR SFFAS rsend a byte via serial bus

> CIOUT is a low-level serial 1/0 utility to transmit a
' single byte to the current serial bus LISTNer using
full handshaking. To prepare for this routine a
device must first have been established as a LISTNer
(see LISTN) and passed a secondary address if
necessary (see SECND). The byte is passed in .A.
Serial output data is buffered by one character, with
the last character being transmitted with ECI after a
call to UNLSN. (Most applications should use the
higher level I/0 routines; see BSOQUT).

4

System Specification for C§S Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE ; Page 15
DESCRIPTIONS : preliminary
15. $FFAB UNTLK ~ iserial: send untalk
Preparation:

Registers: none

Memory: . system map

Flags: nane

Calls: none
Results:

Registers: .A used

Memory: STATUS ($90)

Flags: none
Example:

JSR SFFAB ;UNTALK serial device

UNTLK is a low-lev®l Kernel serial bus routine that
Sends an UNTALK command to all serial bus devices. It
commands all TALKing devices to stop sending data.

(Most applications . should use the higher level I1/0
routines; see CLRCH).

System Specification for C65 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 16
DESCRIPTIONS _ preliminary
146. SFFAE UNLSN ;serial: send unlisten
Preparation:

Registers: none

Memory: system map

Flags: none

Calls: none
Resultfs:

Registers: .A used

Memory: STATUS ($90)

Flags: none
Example:

JSR SFEAE :UNLISTEN serial device

UNLSN is a low-level Kernel serial bus routine that
sends an UNLISTEN command to all serial bus devices.
> It commands all LISTENing devices to stop reading
. data. (Most applications should use the higher level
I/0 routines:; see CLRCH).

System Specification for C65
C64DX KERNEL JUMP TABLE
DESCRIPTIONS

17. SFFBl LISTN

Preparation:

Registers:

Memcry:
Flags:
Calls:

Results:

Registers:

Memory:

Flags:

Example:

JSR SFFB1

Fred Bowen

Pége 17
preliminary

rserial: send listen command

A = device (0-31)

system map
none

none

.A used
STATUS ($90)

none

:command device to LISTEN

LISTN is a low-levdl Kernel serial bus routine that
sends an LISTEN command to the serial bus device in
.A. It commands the device to start reading data.
(Most applications should use the higher level I/0

routines; see CKOUT).

March 1, 1991

System Specification for C65 - Fred Bowen March 1, 1891

C64DX KERNEL JUMP TABLE Page 18
DESCRIPTIONS : preliminary

18. SFFB4 TALK :serial: send talk command

Preparation:

Registers: .A = device (0-31)

Memory: = system map

Flags: none

Calls: none
Results:

Registers: .A used

Memory: STATUS ($90)
Flags: none
Example:

JSR $FFB4 ;command device to TALK

TALK is a low-level Kernel serial bus routine that
sends an TALK command to the serial bus device in .A.

? It commands the device to start sending data. (Most
applications should wuse the higher 1level. I1/0
routines; see CHKIN).

System Specification for C65 Fred Bowen : March 1, 1991

C64DX KERNEL JUMP TABLE . Page 19
DESCRIPTIONS preliminary
19. SFFB7 READSS :read I/0 status byte
Preparation:

Registers: none

Memory: system map

Flags: none

Calls: none
Results:

. Registers: .A = STATUS (390 or SAB6)

Memqry:' STATUS cleared if RS-232 ($A6)
Flags: none -
Example:

JSR SFFR7 : STATUS for last I/0

READSS (alias RLADST) returns the status byte
associated with the 1last 1I/0 -operation (serial

or RS5-232) performed. Serial bus and newDOS devices
update STATUS ($90) and RS-232 I/0

updates RSSTAT (SA6). Note that, to simulate an

6551, RSSTAT is cleared after it is read via READSS.
The last I/0 operation is determined by the contents
of FA ($BA), thus applications which drive 1I1/0
devices using the lower-—level Kernel calls should not
use READSS. :

System Specification for C65 Fred Bowen . March 1, 1991

C64DX KERNEL JUMP TABLE _ Page 20
DESCRIPTIONS preliminary
20. SFFBA SETLEFS ;set channel LA, FA, SA
Preparation:

Registers: A = LA (leogical #)

X - FA (device #) .
.Y = SA ({secondary adr)
Memory: system map
Flags: none
Calls: none
Results:

Registers: none

Memory: LA, FA, SA updated
Flags: none
Example:
see OPEN
2 SETLFS sets the logical file number (LA, $B8), device

number (FA, $BA), and secondary address (SA, $B9) for
the higher-level Kernel I/0 routines. The LA must be
unique among OPENed files and is used to identify
specific files for 1/0 operations. The device number
range is 0 to 31 and is used to target I/0. The SA is
a command to be sent to the indicated device, usually
to place it in a particular mode. If the $A is not
needed, the .Y register should pass $FF. SETLFS is
often used along with SETNAM and SETBNK calls prior
to OPENs. See the Kernel OPEN, LOAD, and SAVE calls
for examples.

System Specification for C65

C64DX KERNEL JUMP TABLE
DESCRIPTIONS

21. SFFBD SETNAM

Preparation:

Registers:

Memory:
Flags:
Calls:

Results:

Registers:

Memory:

Flags:

Example:

see OP§N

SETNAM sets up the filename or

Fred Bowen

March 1,

Page 21
preliminary

;set filename pointers

A = string leﬁgth
X = string adr_low:
.Y = string adr_high

system map
none

SETBNK

none
FNLEN, FNADR updated

none

command string for

higher-level Kernel I/0 calls such as OPEN, LOAD, and

SAVE. The string
passed

(filename or
in .A and updates FNLEN {$B7). The. address of
the string is passed in .X (low) and .Y

command) length is

(high). See

the companion call, SETENK which specifies which RAM

bank the string is found.
SETNAM should still be called and a null ($00)
specified (the address does not matter).
along with SETBNK and SETLFS calls prior

often used

If there is no string,
length
SETNAM is

to OPENs. See the Kernel OPEN, LOAD, and SAVE calls

for examples.

System Specification for C65 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE
DESCRIPTIQONS

Page 22
preliminary

22, $FFCO OPEN ;open logical file

. Preparation:
Registers:
Memory:
Flags:
€alls:

Results:
Registers:
Memory:
Flags:

Example:

LDA #length
LDX #<filename ;fnadr (command)
‘LDY #>filename

JSR $FFBD

LDX #0
- JSR SFF68

LDA #1
LDX #8
LDY #15
JSR S$FFBA
JSR SFFCO
BCS error

filename .BYTE ‘10’
length =2

none
system map
none

SETLES, SETNAM, SETBNK

.A = error code (if any)
4 used
.Y used

setup for I/O
STATUS, RSSTAT updated

.C =1 --> error

OPEN 1,8,15,"10"

“1fnlen

; SETNAM

; fnbank (RAM 0)
: SETBNK

;la

; fa

; 8a

; SETLFS

: OPEN

System Specification for C65 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE : | Page 22A
DESCRIPTIONS preliminary

i a o % w4

o

OPEN prepares a logical file for I/0 operations. It
creates a unique entry in the Kernel logical file
tables LAT ($362), FAT ($36C), and SAT ($376) using
its index LDTND ($98) and data supplied by the user
via SETLFS. There can be up to ten logical files
OPENed simultanecusly. OPEN performs device specific

opening tasks. for serial, R$-232, keyboard & screen,

devices, including clearing the previous status and
transmitting any given filename or command string
supplied by the user via SETNAM and SETBNK. The I/O

status will be updated appropriately and can be read
via READSS. _

The path to OPEN is through an indirect RAM vector at
$31A. Applications may therefore Provide their own
OPEN procedures or suppliment the system’s by
re-directing this vector to their own routine.

System Specification for C65 Fred Bowen _ March 1, 1991

- C64DX KERNEL JUMP TABLE _ Page 23
DESCRIPTIONS ‘ preliminary
23. SFFC3 CLOSE ;close logical file
Preparation:

Registers: .A = LA (logical #)

Memory: system map
Flags: ..C {see text below)
Calls: none
Results:
Registers: .A = error code (if any)
.X used
.Y used _
Memory: logical tables updated
STATUS, RSSTAT updated
Flags: C =1 --> error
Example:
LDA #1 :la
JSR SFFC3 ;CLOSE
¥ BCS error

CLOSE removes the logical file (LA) passed in .A from
the logical file tables and performs device specific
closing tasks. Keyboard, screen, and any unOPENed
files pass through. RS-232 devices are not closed
until all buffered data has been transmitted.

Serial files are .

closed by transmitting a ’close’ command (if an SA
was given when it was opened), sending any ,buffered
character, and UNLSTNing the bus.

There is a special provision incorporated into the
CLOSE routine of systems featuring BASIC DOS command.
If the following conditions are all TRUE, a full
CLCSE is NOT performed: the table entry is removed
but a ‘close’ command is NOT transmitted to the

~device, This allows the disk command channel to be
properly OPENed and CLOSEd without the disk operating
system closing ALL files on its end:

System Specification for C65 Fred Bowen March 1, 1991-

C64DX KERNEL JUMP TABLE . : Page 23A
DESCRIPTIONS . Preliminary

.C =1 --> indicates special CLOSE

FA >=8 --> devigce is a disk

SA = 15 --> command channel

The path to CLOSE is through an indirect RAM vector
at $31C. Applications may therefore provide theéir own
CLOSE procedures or suppliment the system’s by
re-directing this vector to their own routine.

System Specification for CE&5 Fred Bowen March 1, 1991

.C64DX KERNEL JUMP TABLE ' Page 24
DESCRIPTIONS _ preliminary
24. SFFC6 CHKIN :set input channel
Preparation{

Registers: .X = LA (logical #)

Memory: system map
Flags: none
Calls: OPEN
Results:
Registers: .A = error code (if any)
£ used
.Y used
Memory: LA, FA, SA, DFLTN
STATUS, RSSTAT updated
Flags: .C =1 --> error
‘Example:
LDX #1 :la

JSR S$FFCH ;CHKIN
BCS error

CHKIN establishes an input channel to the device
associated with the logical address (LA) passed in
.X, in preparation for a call to BASIN or GETIN.. The
Kernel wvariable DFLTN (599) is updated to indicate
the current input device and the variables LA, FA,
and SA _are wupdated with the file’s parameters from
its entry in the logical file tables (put there by
CPEN) . CHKIN performs certain device specific tasks:
screen and keyboard channels pass through, and serial

channels are sent a TALK command and the SA transmitted
(if necessary). Call CLRCH to restore normal I/Q

channels, ’
CHKIN is required for all input except the keyboard.
If keyboard input is desired and no other input
channel is established, you do not need to call CHKIN
or OPEN. The keyboard is the default input device for
BASIN and GETIN.

The path to CHKIN is through an indirect RAM vector
at $31E. Applications may therefore provide their own
CHKIN procedures or suppliment the system’s by
re-directing this wvector to their own routine.

System Specification for C65 -Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE . Page 25
DESCRIPTIONS : . preliminary
25. SFFCY9 CKoUT ;set output channel
Preparation:

Registers: .X = LA (logical #)

Memofy: system map
Flags: none
Calls: OPEN
Results:
Registers: .A = error code (if any)
.X used
.Y used
Memory: LA, FA, SA, DFLTO
STATUS, RSSTAT updated
Flags: £ =1 ~«=> error
Example:
LDX #1 rla
JSR $FFCY9 ;CKOUT
BCS ergor

CKOUT establishes an output channel to the device
associated with the logical address (LA) passed in
.X, in preparation for a call to BSOUT. The Kernel
variable DFLTO ($9A) is wupdated to dindicate the
current ocutput device and the variables LA, FA, and
SA are updated with the file’s parameters from its
entry in the logical file tables (put there by OPEN) .
CKOUT performs certain device specific tasks:
keyboard channels are illegal, screen channels pass
through, and '

serial channels are sent a LISTN command and the SA
transmitted (if necessary). Call CLRCH t¢ restore
normal I/0 channels.

CKOUT is required for all output except the . screen.
If screen output is desired and no other output
channel is established, you do not need to call CKOUT
or OPEN. The screen is the default output device for
BSOUT.

The path to CKOUT is through an indirect RAM vector
at $320. Applications may therefore provide their own
CKOUT procedures or suppliment the system’s by
re-directing this vector to their own routine.

System Specification for C65 ‘ Fred Bowen

C64DX KERNEL JUMP TABLE

March 1, 1991

Page 26
DESCRIPTIONS preliminary

26, SFFCC CLRCH érestore default channels

Preparation:

Registers: none

Memory: system map
Flags: none
Calls: none
_ Results:
Registers: .A used
X used
Memory: DFLTI, DFLTO updated
Flags: none |

Example:

JSR SFFCC ;restore default I/0

CLRCH (alias CLRCHN) is used to

clear all open

> channels and restore the system default I1/0 channels
after other channels have been established via CHKIN

and/or CHKOUT. The keyboard is

device and the screen is the default

the default input
output devicge.

If the input channel was to a serial device, CLRCH
first UNTLKs it. If the output channel was to a

serial device, it is UNLSNed first.

The path to CLRCE is through an indirect RAM vector
at $322. Applications may therefore provide their own
CLRCH procedures or suppliment the system’s by
re-directing this vector te their own routine.

Systéﬁ Specification for C65
Ce64DX KERNEL JUMP TAELE
DESCRIPTIONS

27. SFFCF BASIN

Preparation:
Registers:
Memory: |
Flags:
Calls:

Results:
Registers:
Memory:

Flags:

Example:

LDY #0

more JSR S$FFCF

STA da;a,Y

INY
CMP #S50D
BNE more

BASIN (alias

current

CHRIN)

Fred Bowen

Ainput device
.A. Input from devices other than the

March 1, 1991

Page 27
preliminary

;input from channel

none
system map
none

CHKIN (if necessary)

.A = character (or error code)
STATUS, RSSTAT updated

.C =1 if error

;index
;input a character
sbuffer it

rearrage return?

reads a character frem the
(DEFLTN $99) and returns it in
keybocard (the

default input device) must be OPENed and CHKINed. The

character is read from the

input buffer associated

with the current input channel: :

System Specification for C65 Fred Bowen March 1, 1981

- C64DX KERNEL JUMP TABLE Page 27A
DESCRIPTIONS preliminary

1. RS-232 data is returned a character at a time
from the RS-232 input buffer, waiting
until a character is received if necessary. If
RSSTAT is bad from a prior operation,
input is skipped and null input (carrage return)
is substituted.

2. Serial data is returned a character at a time
directly from the serial bus, waiting until a
character is sent if necessary. If STATUS ($90)
is bad from a prior operation, input is skipped
and null input {carrage return) is substituted.

3. Screen data is read from screen RAM starting at
the current cursor position and ending with a
faked carrage return at the end of the logical
screen line. .

4. Keyboard data is input by turning on the cursor,
reading characters from the keyboard buffer and
echoing them on the screen until a carrage return
is encountered. Characters are then returned one
at a time from the screen until all characters
input have been passed, including the carrage
return. Any calls after the ecl will start the
process over again. .

The path to BASIN is through an indirect RAM vector

at §$324. Applications may therefore provide their own
? BASIN procedures or suppliment the system’s by

re-directing this vector to their own routine.

System Specification for C6&5S Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE - ~ Page 28
DESCRIPTIONS preliminary
28. S$FFD2 BSOUT ;output to channel
Preparation:

Registers: .A = character

Memcry:' system map

Flags: " none

Calls: CEOUT (if necessary)
Results: |

Registers: .A = error code (if any)

Memory: STATUS, RSSTAT updated
Flags: .C =1 if error
Example:

LDA #character :
JSR S$FFD2 soutput a character

BSOUT (alias CHROUT) writes tHe character in .A to
the current output device (DFLTO $9A). Output to
devices other than the screen (the default cutput
device) must be (2ENed and CKOUTed. The character is
written to the output buffer associated with the
current output channel: '

1. RS-232 data is put a character at a time into the
R5-232 output buffer, waiting until there
is room if necessary. :

3. Serial data is passed to CIQUT which buffers one
character and sends the previous character.

4. Screen data is put into screen RAM at the current
cursor position,

5. Keyboard output is illegal.

The path to BSOUT is through an indirect RAM vector
at $326. Applications may therefore provide their own
BSOUT procedures or suppliment the system’s by
re-directing this vector to their own routine.

System Specification for C65

C64DX KERNEL JUMP TABLE

DESCRIPTIONS

2%. S$FFDS LOAD

Fred Bowen

;load from file

March 1, 1991

Page 29
preliminary

Preparation: _
Registers: A = 0 --> LOAD
: A > 0 -=> VERIFY
.X = load adr lo (if SA=0)
.Y = load adr_hi (if SA=0)
Memory: system map
Flags: none
Calls: SETLFS, SETNAM, SETBNK
Results:
- Registers: .A = error code (if any)
- .X = ending adr_lo
.Y = ending adr_hi
Memory: per command
STATUS updated
Flags: .C =1 --> error
Example: LOAD "program*,8,1
> LDA #length :fnlen
LDX #<filename ;fnadr
LDY #>filename
JSR SFFBD ; SETNAM
LDA #0 :load/verify bank (RAM 0)
LDX #0 ; fnbank (RAM_O0)
JSR SFF68 : SETBNK
LDA #0 :1a (not used)
IDX #8 :fa s
LDY #SFF ?sa (SA>0 normal load)
JSR SFFBA : SETLFS
LDA #0 :load, not verify
LDX #<load _adr ; (used only if SA=0Q)
LDY #>load adr ; (used only if SA=0)
JSR SFFDS :LOAD
BCS error
STX end_lo
STY end_hi
filename .BYTE ’‘program’

length-

i a pp

System Specification for C6S Fred Bowen March 1, 1991

' C64DX KERNEL JUMP TABLE ‘ ' o Page 29a
DESCRIPTIONS , preliminary

This routine LOADs data from an input device into
memory. It can also be used to VERIFY that data -

in memory matches that in a file, LOAD performs
device specific tasks for serial LOADs. -

You cannot LOAD from RS~-232 devices, the screen, or
the keyboard. While LOAD performs all the tasks of an
OPEN, it does NOT create any logical files as an OPEN
does. Also note that LOAD cannot ’‘wrap’ memory banks.
As with any 1I/0, the I/0 status is updated
appropriately and can be read via READSS. LOAD has
two options that the user must select:

1. LOAD vs. VERIFY: the contents of .A passed at the
call to LOAD determines which mode is in effect.
If .A is zero, a LOAD operation will be performed
and memory will be overwritten. If .A is
non-zero, a VERIFY operation will be performed
and the result passed via the error mechanism.

2. LOAD ADPDRESS: the secondary address (SA) setup by
the call to SETLFS determines where the LOAD
starting address comes from. If the SA is zero,
the user wants the address in .X and .Y at the
time of the call to be used. If the SA is
non-zero, the LOAD starting address is read from
the file header itself and the file loaded to the
same place from which it was SAVEd.

The serial LOAD rodtine automatically attempts to
access a newDOS drive, then attempts

to BURST locad a file, and resorts to the normal load
mechanism (but still using the FAST serial routines)
if the BURST handshake is not returned.

The path_to LOAD is through an indirect RAM vector at
$330. Applications may therefore provide their own
LOAD procedures or suppliment the system’s by
re-directing this vector to their own routine.

JVRRE I VPSS

System Specification for C65 Fred Bowen March 1,
C64DX KERNEL JUMP TAELE _ Page 30
DESCRIPTIONS preliminary

30. SFFD8 SAVE :séve to file
Preparation:
Registers: .A = pointer to start adr
.X = end_adr lo s
.Y = end_adr_hi
Memory: system map
Flags: none
Calls: SETLFS, SETNAM, SETBNK
Results:
Registers: .A = error code (if any)
X = used
.Y = used
Memory: STATUS updated
Flags: .C =1 --> error
Example: SAVE "program®, 8
. LDA #length ;fnlen
> LDX #<filename ;fnadr
LDY #>filename
JSR SFFBD .+ SETNAM
_ Lba #0 :save from bank (RAM 0)
LDX #0 ;fnbank (RAM 0)
JSR 5FF68 ; SETBNK
LDA #0 rla (not used)
LDX #8 : fa
LDY #0 rsa (cassette only)
JSR S$FFBA : SETLFES
LDA #start ;pointer to start address
LDX end ;ending address lo
LDY end+l :ending adr hi
JSR SFFD8 7 SAVE
BCS error
filename .BYTE ‘program’
length = 7 .
start .WORD addressl :page-0
end .WORD address?

1991

System Specification for CE5 ' Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 30A
DESCRIPTIONS : preliminary

This routine SAVEs data from memory to an output
device. SAVE performs device specific ' tasks for
serial SAVEs. You cannot SAVE from

RS-232 devices, the screen, or the kevboard, While
SAVE performs all the tasks of an OPEN, it does NOT
create any logical files as an OPEN does. The
starting address of the area to be . SAVEd .must be
placed in a base-page vector and the address of this
vector passed to SAVE in .A at the time of the call.
The address of the last byte to be SAVEd PLUS ONE is
passed in .X and .Y at .the same time.

SAVE first attempts to accéss a newDOS drive.
There is no BURST save; the normal FAST serial
routines are used, As with any I/0, the I/0 status

will be updated appropriately and can be read via
READSS. :

The path to SAVE is through an indirect RAM vector at
$332. Applications may therefore provide their own
SAVE procedures or suppliment the system’s by
re-directing this vector to their own routine.

System Specification for €65 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 31
DESCRIPTIONS preliminary
31. SFFDB SETTIM :;set internal clock
Preparation:
Registers: .A = hours
.X = minutes
.Y = seconds
.2 = tenths
Memory: system map
Flags: nene
Calls: none
" Results:

Registers: none
Memory: TOD at CIA $DCO0 updated

Flags: none

'Example:

LDA #0 - rreset clock
TAX
? TAY
TAZ
JSR SFFDB :SETTIM

SETTIM sets the system CIA 24-hour TOD clock, which
counts tenths of a second and automatically
wraps at the Z24-hour point.

System Specification for C&5 Fred Bowen March 1, 1991-

C64DX KERNEL JUMP TABLE . Page 32
DESCRIPTIONS - . preliminary
32. SFFDE RDTIM sread internal clock
Preparation:

Registers: none

Memory: = system map

Flags: none

Calls: none

Results:

Registers: .A = hours
.X = minutes
.¥ = seconds
.2 = tenths

Memory: none

Flags: nene -

Example:

JSR SEIDE ;RDTIM

RDTIM reads the system CIA 24-hour TOD clock, which

counts tenths of a second. The timer is automatically
wrapped at the 24-hour point.

-

System Specification for C65 Fred Bowen .. March 1, 1991A
C64DX KERNEL JUMP TABLE . Page 33
DESCRIPTIONS Preliminary

33. SFFEl STOP ;scan stop key

Preparation:

Registers: none

Memory: system map
Flags: none
Calls: none

Results:

Registers: .A = last keyboard row
: X = used (if STOP key)

Memory: none
Flags: status valid
Example:

JSR SFFE1 :scan STOP key
BEQ stop ;branch if down

2 ' STOP checks a Kernel variable STKEY ($91), which is
updated by UDTIM during normal IRQ processing and
contains the last scan of keyboard column C7. The
STOP key is bit-7, which will be zeroc if the key is
down. If it is, default I/0 channels are restored via
CLRCH and the keyboard queue is flushed by reseting
NDX (5D0). The keys on keyboard -line C7 are:

bit: 7 6 5 4 3 2 1 0
key: STOP Q C= SPACE 2 CTRL <~~ 1

]

The path to STOP is through an indirect RAM vector at
$328. Applications may therefore provide their own
STCP procedures or suppliment the system’s by
re-directing this vector to their own routine.

System Specification for C65 Fred Bowen " March i, 1991

' C64DX KERNEL JUMP TABLE Page 34
DESCRIPTIONS . ‘Preliminary
34, SFFE4 GETIN ;read buffered data

Preparation:

Registers: none

Memory: system map

Flags: none

Calls: CHKIN (if necessary)

Results: 7

Registers: .A = character (or error code)
.X used
.Y used

Memory: STATUS, RSSTAT updated

Flags: .C =1 if error

Example:

wait JSR SFFE4 :get any key
BEQ watt
STA character

GETIN reads a character from the current input device
(DFLTN $99) buffer and returns it in .A. Input from
devices other than the keyboard (the default input
device) must be OPENed and CHKINed. The character is

read from the input buffer associated with the
current input channel:

System Specification for C65 Fred Bowen March 1,

- C64DX KERNEL JUMP TABLE

DESCRIPTIONS

1.

Page 34A
preliminary

Keyboard input: a character is removed from the
keyboard buffer and passed in .A, If the buffer
is empty, a null ($00) is returned.

RS-232 input: a character is removed from the
RS-232 input buffer and passed in .A. If

the buffer is empty, a null ($00) is returned.
(use READSS to check validity). -

Serial input: GETIN automatically jumps to BASIN.
See BASIN serial I/O0.

Screen input: GETIN automatically jumps to BASIN.
See BASIN serial I/OQ. '

The path to GETIN is through an indirect RAM vector
at $32A. Applications may therefore provide their own
GETIN procedures or suppliment the system’s by
re-directing this vector to their own routine,

j System Specification for C65 Fred Bowen March 1, 1991
i

C64DX KERNEL JuMP TABLE Page 35
DESCRIPTIONS preliminary
| 35. SFFE7 CLALL sclose all files and channels
Preparation:

Registers: none

Memory: system map
Flags: none
Calls: none
Results:
Registers: A used
-¥X used
- Memory: LDTND, DFLTN, DFLTO updated
" Flags: none

i Example:

JSR SFFE7 ;close files

4

CLALL deletes all logical file table entries by
reseting the table index, LDTND (598} . It clears
current serials channels (if any) and restores. the
default I/0 channels via CLRCH.

The path to CLALL is through an indirect RAM vector
at $32C. Applications may therefore provide their own
CLALL procedures or suppliment the system’s by
re-directing this vector to their own routine,

System Specification for C65 Fred Bowen March 1, 1991
C64DX KERNEL JUMP TABLE Page 36
DESCRIPTIONS preliminary

36. SEFFEA ScanStopKey :
(was UDTIM , which has no purpose on C64DX)

Preparation:

Registers: none

Memory: = system map
Flags: none
Calls: none
Results:
Registersi A used
.X used
Memory: TIME, TIMER, STKEY updated
Flags: - none
Example:

JSR SFFEA ; ScanStopKey

scans key line C7, on which the - STOP key
2 lies, and stores the result in STKEY ($91). The
Kernel routine STOP utilizes this wvariable.

System Specification for c6S Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 37
DESCRIPTIONS preliminary
37. $FFED SCRORG ;get current 3creen_window size
Preparation:
Registers: none
Memory: system map
Flags: none
Calls: noene
Results:
Registers: .A = secreen width
.X = window width
.Y = window height
Memory: none
Flags: none
Example:
JSR SFgED ; SCRORG

SCRORG returns active window’s size (maximum row & column #) & origin

ADAAAAAAA

entry: nothing required.

exit: ¢ = maximum screen width (0=80, 1=40) default = @
-X = maximum column number (# columns minus 1) default = 79
+¥Y = maximum line number {# lines minus 1) default = 24
<& = window address (home position}, low default = $0800
.2 = window address, high

-

System Specification for C65 Fred Bowen . ' March 1, 1991

C64DX KERNEL JUMP TABLE Page 38
DESCRIPTIONS _ preliminary

38. SFFF0O PLOT ;read/set cursor position
Preparation:

Registers: .X = cursor line
Y = cursor column
Memory: system map

Flags: .C = 0 --> set cursor position

.C 1 --> get cursor position
Calls: none
Results:

Registers: .X = cursor line

.Y = cursor column
Memory: TBLX, PNTR updated
Flags: L =1 «=> error

PLOT Readé or sets the cursor position within current window

Entry: .c = 1 Returns the cursor position (.y=ceolumn, .x=line)
relative to the current window origin (NOT screen origin).

.c =0 Sets the cursor position (.y=column, .x=line) relative
- to the current window origin (NOT screen origin).

Exit: 2> When reading position, .X=line, .Y=column, .C=1 if wrapped line

When setting new position, .¥X=line, .Y¥Y=coclumn, and:

.¢ = 0 Normal exit. The cursor has been moved to the posztlon
contained in .x & .y relative to wlndow origin
{(see SCRORG). '

.¢c = 1 Error exit. The requested position was outside the

current window (see SCRORG) The cursor has not been
moved. '

System Specification for C6S _ Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 38a
DESCRIPTIONS preliminary

When called with the carry status set, PLOT returns
the current cuxrsor position relative to: the current
window origin (NOT screen origin). When called with)
the carray status clear, PLOT attempt to move the
cursor to the indicated line and column relative to
the current window origin (NOT screen origin}. PLOT
will return a clear carry status if the cursor was
moved, and a set carry status if the requested
Position was outside the current window (NO CHANGE
has been made) . :

Editor variables that are useful:

SCBOT - SE4 --> window bottom
SCTOP - $E5 =--> window top

SCLF - SE6 --> window left side
SCRT - $E7 --> window right side
TBLX - $EC --> cursor line

PNTR = $ED =-<> cursor column

LINES - $EE --> maximum screen height
COLUMNS $EF --> maximum screen width

System Specification for C65 Fred Bowen March 1, 1991
C64DX KERNEL JUMP TABLE Page 39

DESCRIPTIONS preliminary
39. SFFF3 IOBASE ;read base address of I/O block
Pieparation:

-Registers: none

Memory: = system map

.Flags: none

Calls: none
Results:

Registers: .X = 1lsb of I/0 block

.Y = msb of I/0 block
Memory: none
Flags: none

Example:
JSR SFFF3 ;find the I/0 bleock
IOBASE is unused in the C&4DX and is included for

compatibility and completeness. It returns the
address of the I/0 block in .X and .Y.

System Specification for C§5 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE Page 40
DESCRIPTIONS preliminary

C. NEW C64DX XERNEIL CALLS

The following system calls comprise a set of extensions
to the standard CBM jump table. They are specifically
for the C64DX machine and and as such should not be.
considered as permanent additions to the standard jump
table. With the exception of C64MODE, they are all true
subroutines and will terminate wvia RTSs. As with all
Kernel calls, the system configuration (BANK S$FF)

must be in context at the time of the call.

C64DX KERNEL JUMP TARLE ?age 41
DESCRIPTIONS preliminary
1. $FF4D SPIN_SPOUT :setup fast serial ports for I/0Q
Preparation:

Registers: none
Memory: system map

Flags:- .C 0 --> select SPINP

1 --> select SPOUT

(@]
i

Calls: none

Results:
Registers: .A used

Memory: CIA-1, FSDIR register

Flags: none
Example:
CLC

JSR $FF4D :setup for fast serial input

The fast serial protocol utilizes CIA_1

{6526 at $DCOQ) and a special driver circuit
controlled in part by the FSDIR register. SPINP and
SPOUT are routines used by the system to set up the
CIA and fast serial driver circuit for input or

output. SPINP sets up CRA (CIA 1 register 14) and

clears the FSDIR bit = for input.

SPOUT sets up CRA, ICR (CIA_l register 13), timer A
(CIA 1 registers 4 & S), and sets the FSDIR bit for
output. Note the state of the TODIN bit of CRA is

always preserved. These routines are required only

applications driving the fast serial bus themselves
from the lowest level,

System Specification for C&5 : Fred Bowen March 1, 1991

by

System Specification for C65 Fred Bowen March 1,

C64DX KERNEL JUMP TABLE Page 42
DESCRIPTIONS pPreliminary
2. SFF50 CLOSE_ALL :close all files on a device
Preparation:
Registers: A —=> device # (FA: 0-31)
Memory: system map
Flags: none
Calls: none
Results:
Registers: .A used
.X used
.Y used
Memory: none
Flags: none
Example:
LDA #508
JSR $i¥F50 ;close all files on device 8

The FAT is searched for
is performed for -all
channels is the current
channel is restored.

This call is utilized,
command ‘DCLOSE’.

the given FA. A proper CLOSE
matches. If one of the CLOSEd
I/0 channel then the default

for example, by the BASIC

System Specification for C&5
C64DX KERNEL JUMP TABLE
DESCRIPTIONS :

3. $FFS3 C64MODE

Preparation:

Registers:

Memory:
Flags:
Calls:

Results:

Registers:

Memory:

Flags:

Example:

JMP SFF53

Fred Bowen March 1, 1891
Page 43
preliminary

;reconfigure system as a c¢/64

none
system map
none

none

none
none

none

;switch to C64 node

THERE IS NO RETURN FROM THIS ROUTINE. The system
downloads code to RAM which reMAPs the system to
> put the C64 ROM in context, resets all VIC-III modes,

and jumps to the C64

Return to C65 mode is
a program could do it

start routine,

by resetting the machine, although
very easily. A vector on the C64

side is provided to restart C64DX mode.

System Specification for C65 Fred Bowen ' March 1, 1991
C64DX KERNEL JUMP TABLE . Page 44
DESCRIPTIONS pPreliminary

4. SFF56 MonitorCall ;enter Monitor mode

Preparation:

Registers: none

Memory: ‘ system map

Flags: none

Calls: none
Results:

Registers: none:

Memory: - none

Flags: none
Turns off BASIC receipt of IRQ, maps BASIC out, maps
the Monitor in, and calls it.
When the Monitor is exited, the éystem is restored,

BASIC mapped in, and the system vector taken (usually
points to BASIC warm btart entry).

System Specification for Cé65

. C64DX KERNEL JUMP TABLE

DESCRIPTIONS

5. $FF59 BQOT_SYS

Preparation:

Registers:

Memory:
Flags:
Calls:

Results:

BOOT SYS5

at $00400, turns off BASIC, and JMPs to it,
disk not present,

Registers:

Memorf:

~ Flags:

Boot an alternate system.

Fred Bowen

" none

system map

none

nane

undefined
undefined

undefined

March 1, 1891

Page 45
preliminary

;boot an alternate 0S5 from disk

Reads the "home" sector of any
diskette (physical track 0 sector 1, 512 bytes) into memory

Nothing done if

JMP not made if first byte is not 3$4C.

It forces the "system” memory map, not user environment.

‘No suppeort for ClZB-style BOOT sector.

Neot related to

BASIC 10.0 BOOT command, which RUNs a BASIC program
3 called "AUTOBOCT.C&5*" if found.

System Specification for C&5 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TABLE . Page 46
DESCRIPTIONS preliminary
6. SFF5C PHOENIX : 2?7227 C64DX diagnostics 7?7277
- Preparation:

Registers: none

Memory: system map

Flags: none

Calls: none
Results:

Registers: undefined

Memory: undefined
Flags: none
Example:

JSR SFFSC : PHOENIX

Not same thing as €128 Phoenix routine. 1In the C65 develoépment
system, this routine is calli® after BASIC inits and performs
some system diagnostics, displaying results on the screen.

System Specification for C65 Fred Bowen March 1,

C64DX KERNEL JUMP TARLE Page 47
DESCRIPTIONS . preliminary
7. SFFSF LKUPLA ;search tables for given la
8., SFF62 LKUPSA ;search tables for given sa
Preparation:
Registers: .A= LA (logical f£ile number)
if LKUPLA :
. Y= SA (secondary address)
if LKUPSA
Memaory: system map
Flags: nene
Calls: none
Results:
Registers: .A = LA (only if found)
X = FA (only if found)
.Y = SA (only if found)
Memory: none
Flags: .C =0 if found
.C =1 if not found
> |
Example:
LDY #$60 ;find an available S2
again INY
- CPY #86F
BCS too_many ;too many files open
JSR S$FFa2 :LKUPSA
BCC again rget another if in use

LKUPLA and LKUPSA are Kernel routines used primarily
by BASIC DOS ccmmands to work around a user’s open
disk channels. The Kernel regquires unique logical
device numbers (LAs) and the disk requires unique
secondary addresses (SAs), therefore BASIC must find
alternative unused wvalues whenever it needs to
establish a disk channel.

System Specification for Cg5 _ Fred Bowen . 'March i, 1991.

'C64DX KERNEL JUMP TABLE -

Page 48
DESCRIPTIONS preliminary
9. $FFE5 SWAPPER ;switch between 40 & 80 column modes
Preparation:
Registers: none
Memory: - system map
Flags: none
Calls: none
Results:
Registers: .A used
.X used
.Y used
Memory: screen cleared
Flags: none
Example:
LDA S$D7 ;check display mode
BMI i.280 sbranch if 80 column
JSR SFESE :switch from 40 to 88

MODE, location $D7, is toggled by SWAPPER to indicate
the current display mode: $80= 80-column, $00=
40-column. Because they are both VIC screens, changing
them requires clearing the screens since they share the

same memory location.

System Specification for C65 . Fred Bowen March 1,
C64DX KERNEL JUMP TABLE Page 49
DESCRIPTIONS preliminary

10. SFF68 PFKEY - ;program a function key
Preparation:

]

pointer to string adr
{lo/hi/bank)
.¥ = string length -

= key number (l1-16)

Registers: .A

.X
Memory: system map
Flags: none
Calls: nene
Results:
Registers: A used
.X used
.Y used
Memory: PKYBUF, PRKYDEF tables updated
Flags: .C 0 if successful

.C = 1.if no room

Example:
? LDA #SFA ;pointer to string addres
LDY #6 . - ;length :
LDX #15 tkey # (’HELP’ key)

JSR SFF68 ;install new key def’n
BCS no_room

>000FA 00 13 00 “iptr to $1300 bank 0
>01300 53 54 52 49 4E 47 :’string’

PFKEY {alias KEYSET) is an Editor utility o+ replace
a function key string with a user’s string. Keys

1-14 are F1-F14, 15 is the HELP key, and 16 is the
<shift>RUN string. The example above replaces the
"help<cr>’ string assigned at system initialization
to the HELP key with the string ’string’., Both the
key length table, PKYBUF ($1000-$100F), and the
definition area, PKYDEF (51010-$10FF) are compressed
and updated. The maximum length of all 16 strings is
240 characters. No change is made if there is
insufficient room for a new definition.

1991

System Specification for C§5

.C64DX KERNEL JUMP TABLE

DESCRIPTIONS .
11. SFF6B SETBNK :

Preparation:

Registers:

Memory:
Flags:
Calls:

Results:
Registers:
Memory:

Flags:

Example:
see OPEN

b 4

Fred Bowen

A

-Page 50
preliminary

set bank for I/O operations
and filename .

BA, memory bank (0-FF)
FNBANK, filename bank

.X
system map
none

SETNAM

none
BA, FNBANK updated

none

SETBNK is a prerequisite for any memory i/0
operations and must be used along with SETLFS and
SETNAM prior to OPENing files, etc. BA ($C6) sets the

current 64KB memory.

bank for LOAD/SAVE/VERIFY

operations. FNBANK ($C7) indicates the bank in which

the filename string

is found. the Kernel routine

SETBNK -is often used along with

SETNAM and SETIFS calls

prior to OPENs. See the

Kernel OPEN, LOAD, and SAVE calls forrexamples.

March 1, 1991,

System Specification for C65 Fred Bowen : March 1, 1991

- C64DX KERNEL JUMP TABLE Page 51
DESCRIPTIONS preliminary

12, SFF6E JSRFAR ;gosub in another bank
13. SEF71 JMPFAR :goto another bank

.Preparation:
Registers: none

Memory: = system map, also:
502 --> bank (0-FF)
$03 --> PC high
$04 --> PC_low
505 =-=-> .8 (status)

$06 --> .A
$07 --> .X
$08 --> .Y
$09 --> .2
Flags: _ none
Calls: - none
Results:
. Registers: none
Memory: as per call, also:
§05 --» .8 (status) -
> 506 --> A
$07 -->» X
508 =~-> .Y
$09 --> .2
- Flags: none

The two rou@ines, JSRFAR and JMPFAR, enable code
executing in the system bank of memory te call (er
JMP to) a routine in any other bank. In the case of

JSRFAR, the called routine must restore the ssystem map
before executing a return.

JSREFAR calls JMPFAR, Both are RAM routines, located
at $39C and $3Bl respectively.

The user should take necessary precautions when calling
a non-system bank that interrupts (IRQs & NMIs) will be
handled properly ({(or disabled beforehand).

System Specification for C65 ' Fred Bowen March 1, 1991

"C64DX KERNEL JUMP TABLE Page 52
DESCRIPTIONS preliminary
14. $FF74 LDA_FAR :LDA (.X),Y from bank .Z
Preparation:
Reéisters: .A = none
' .X = pointer to base page pointer
.Y = index .
.2 = bank (0-FF)
Memory: setup indirect vector
Flags: none
Calls: none
Results:
Registers: .A = data
"~ .X used
Memory: ‘DMA_LIST updated
Flags: status wvalid

LDA_FAR enables applications to read data from any
other bank. It builds a DMA_LIST to fetch one byte,
executes the DMA, and reads the byte. It’s a ROM routine.

System Specification for Cé5 Fred Bowen | March 1, 1991

C64DX XERNEL JUMP -TABLE i ?age 53
DESCRIPTIONS ‘ preliminary
15. $SFF77 STA_FAR :STA (.X),Y from bank .2
Preparation:
Registers: A = data .
.X = pointer to base page pointer
N Y = index :
.24 = bank (0-FF)
_ Memory: setup indirect vector
Flags: none
Calls: none
Results:

Registers: .X used
Memory: DMA LIST
Flags: status invalid
STA_FAR enables applications to write data to any

other bank. It builds a DMA LIST to stash one byte,
and executes the DMA. It’s a ROM routine.

System Specification for C§5 Fred Bowen March 1, 1991

" C64DX KERNEL JUMP TABLE ' Page 54
DESCRIPTIONS preliminary
16. SFF7A CMP_FAR ;CMP (.X),Y from bank .Z
Preparation:
Registers: .A = data ‘
.X = pointer to a base page pointer
.Y = index -
.2 = bank (0-FF)
Memory: setup indirect vector
Flags: none
Calls: none

Results:
Registers: .X used
Memqry: none
Flags: status valid

CMPHFAR'enables applications to compare data to any
other bank. It builds calls LDA FAR and compares the

5 given byte with the byte fetched. It’s a ROM routine,

System Specification for C65 Fred Bowen March 1, 1991

C64DX KERNEL JUMP TARLE Page 55
DESCRIPTIONS preliminary
17. $FFID PRIMM :print immediate utility
Preparation:

Registers: none

Memory: none

Flags: none

Calls: none
Results:

Registers: none
Memory: none

Flags: none

Example:

JSR S$FF7D .;display following text

-.BYTE ’‘message’
.BYTE 3500 ;terminator

b4 JMP continue ;execution resumes here

PRIMM is a Kernel utility wused to print (te the
default output device) a PETSCII string which
immediately follows the call. The string must be no
longer than 255 characters and be terminated by a
null (500) character. It cannot contain any embedded
null characters. Because PRIMM uses the system stack
to find the string and a return address, you MUST NOT
JMP to PRIMM. There must be a valid address on the
stack. ' 4

BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN 2/25/91

3.4.6 BASIC 10.0 MATH PACKAGE

This document details the many user-callable routines
available in the C€64DX BASIC 10.0 math package.

Floating Point Math Package Conventions

In BASIC memory the number is PACKED and looks like this:

1 2 3 ' 4 5
Isigned |B7=3SGN | I i |
EXP | w—————- IMANTTIS S A] LSB]
1 +$80 | MSB | i ! I

—-“-—------”----—‘-—-——ﬂ*————ﬂ-—-~--l-_—-'_

Because the mantissa is normalized such that its msb is always
1, BASIC stores the SIGN of the mantissa here to. save a byte of
Storage. It must be normalized when Put in the FACC (see CONUPK).
In the FACC the NORMALIZED number looks like this:

$63 564 $65 $66 567 $68
FACEXP FACHO FACMCH FACMO FACLO FACSGN

-————--—-.———-n—----———....-_——-.-————-._—_———-.——-—-.—-—.-—-—

Isigned |BIT 7=1]| | | | SIGN |
| EXP |--——==a-- IMANTTIS SSA| LSB I+ = 5001
| +$80 | MSB |] H |- = $FF|

L T ok o - —— e ———— . o o, - e T ——

Nergtive exponents are not stored 2's complement. The maximum
exponent is 10738 ($FF) and the minimum is 10~-39 {$01). A zero
value for the exponent means the number is zero. Since the
exponent is a power of 2, it can be described as the number of
left (EXP>$80) or right (EXP<=$80) shifts to be performed on
the normalized mantissa to create the binary representation of
the value. There is a second floating accumulator called ARG
which has the same layout. It is located at $6A through $6F.
Throughout the math package the floating point format is:

* the mantissa is 24 bits long.

* the binary point is to the left of the msb. '
* the mantissa is always positive, and its msb is always 1,
* number = mantissa * 2”exponent, sign in FACSGN.

* the sign of the exponent is the msb of the exponent .

* the exponent is stored in excess $80 (i.e., it is a signed
8-bit number with 380 added to it.)

* an exponent of zero means the number is zexo. (note that the
rest of the accumulator cannot be assumed to be zero.)

* to keep the same number in the accumulator while shifting:
right shifts ~--> increment exponent
left shifts --> decrement exponent

Arithmetic routine calling conventions:

* For one argument functions:
the argument is in the FACC.
the result is left in the FACC.

* For two argument operations: ,
' the first argument is in MEMORY (packed) or ARG (unpacked).
the second argument is in the FACC.
the result is left in the FACC.

* Always call ROM routines with SYSTEM memory in context (BANK S$FF)

A note concerning precision, Since the mantissa is always
normalized, the high order bit of the most significant byte is
always one. This guarantees at least 40 bits (5 byte mantissa
times 8°bits each) of precision, which is approximately 9
significant digits plus a few bits for rounding. In fact,
there is a ’rounding’ byte, FACOV ($71), which should, for the
greatest degree of precision, be loaded whenever you load the
FACC. The high order bit of FACOV is utilized in most of the
math routines. While some of the ‘movement’ routines ‘round’
the loaded floating point number (i.e., FACOV = $00), others
(such as CONUPK) do not- assuming the value of FACOV is the
useful result of an operation in progress. In 99% of the cases
you need not worry about it, as its significance is virtually
nil. For the greatest degree of precision however, use it.

A few exampies of normalized (FACC) floating point numbers:

VALUE EXP MANTTISSHA SIGN
1E38 = FF 96 76 99 53 00
4E10 = A4 95 02 FS Qo 00
2E10 = A3 85 02 F9 Q0 00
1;10 = Ad 95 . 02 F9 Q0 00
10 = 84 AQ 00 00 00 00

1 = 81 - B0 .00 00 00 00

.5 = 80 80 00 00 #]0] o]0]
.25 = 7F 80 00 (¢]] 00 00
.6 = 80 899 99 99 SA 00
1E-04 = 13 D1 B7 59 59 00
1E-37 = 06 g8 1C EA 15 . .00
1E-38 = 02 D% Cc7 DC EE 00
3E-39 = 01 82 AB 1E 2A 00
0 = 00 XX . XX XX XX 00

-1 = 81 80 00 00 00 JFE

-5 .

83 A 00 00 00 EFF

Now for a simple example of deriving the actual binary from the FACC:

5 = 83 AQ 00 00 - 00 00
I A\
i \
(583-380) {SAD)
| |
which means: 23 * ,10100000, or shift mantissa LEFT 3,

which gives: 101.00000 (binary} or 5.0 {(hex)

LR e M B L TR T

BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN 2/25/91

NAME : _ AYINT
FUNCTION: CONVERT FLOATING POINT TO INTEGER
PREPARATION: FACC contains floating point numbexr (-32768<=n<=32767)
RESULT: FACMO ($66) contains signed integer (msb)
: FACLGC ($67) contains signed integer (lsb)
ERROR: ?ILLEGAL QUANTITY ERROR if FACC too big.
EXAMPLE: JSR AYINT : INT (FACC)
_LDA 3566 s MSB ’
LDY $67 ; LSB
NAME : GIVAYF ’
FUNCTION: CONVERT INTEGER TO FLOATING POINT
PREPARATION: -A contains signed integer (msb)
.Y contains signed integer (lsb)
RESULT: FACC contains floating point number
EXAMPLE: LDA #>INTEGER
LDY #<INTEGER
JSR GIVAYF :FLOAT (A,Y)
memesem—= h)r e e S e e e e T e e S e R e e e e e e e e e D eSS eE et emememe e s e
NAME : FOUT
FUNCTION: CONVERT FLQATING POINT TO ASCII STRING
PREPARATION: FACC contaiQ§ floating point number
RESULT: FBUFFR ($100) contains ASCII string (null terminated)
-A contains pointer to string (lsb)
.Y contains pointer to string {(msb)
EXAMPLE: JSR FQUT : CONVERT FACC TO STRING AT $100‘

=—=-_.-....—=-..—..—_—.-=—=--.—_--_—_-....—_.—'_—.-=-=—=-...-=—=—=—=—=—=-=—=—=—=~=—=——

' BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F . BOWEN 2/25/91"

NAME :
FUNCTION:

PREPARATION:
SPECIAL NOTES:

RESULT:

EXaMPLE:

VAL 1 _
CONVERT ASCII STRING TO FLOATING POINT

INDEX1 ($24,$25) contains pointer to string
.A contains length of string

String *must* be in var_bank. ‘Any

invalid character terminates conversion when
encountered (i.e., acts like a terminator).
FACC contains floating point number

LDA #<POINTER
LDY #>PQINTER

STA INDEX1 ; SET POINTER TO STRING
STY INDEX]+1 °

LDA #LENGTH : SET STRING LENGTH

JSR VAL 1 ;FACC = VAL ({STRING)
GETADR '

NAME :
FUNCTICN:

PREPARATION:
RESULT:
ERROR:

EXAMPLE:

CONVERT FLOATING POINT TO ADDRESS

FACC contains floating point number (0<=n<=65535)
POKER ($16,517) contains unsigned integer address
?ILLEGATL QUANTITY‘ERROR if FACC too big.

JSR GETADR - ;ADR(FACC)
LDA 816 ;LSB

LDY $17 ;M5B
FLOATC

NAME :
FUNCTION: 7

PREPARATION:

RESULT:
ERROR :

| EXAMPLE:

CONVERT ADDRESS TO FLOATING POINT
FACHO ($64) contains address (msb)
FACMOH ($65) contains address (lsb)
.X containmns exponent ($90 always)
.C=1 if positive (always)

FACC contains floating peoint number
?0VERFLOW ERRCR if FACC too bhig.

LDA #<ADDRESS
LDY #>ADDRESS

STA FACMOH : SET ADDRESS
STY FACHO

LDX #590 : EXPONENT
SEC :POSITIVE

JSR FLOATC :FLOAT ADDRESS

BASIC 10.0 MATH PACKAGE

NAME: -
FUNCTION:

PREPARATION:

- SPECIAL NOTES:

** *PRELIMINARY* * % F.BOWEN 2/25/91

FSUB
FACC = MEMORY - FACC

FACC contains fleating point subtrahend .
-A = pointer (lsb) to packed floating point minuend
.Y = pointer (msb)} to packed floating point minuend

The minuend *MUST* be in VARBANK in packed
format. FSUB calls CONUPK to normalize it,.

RESULT: FACC contains floating point difference
ERROR: ?0OVERFLOW ERROR if FACC too big.
EXAMPLE: LDA #<POINTER
LDY #>POINTER ;SET POINTER TO *PACKED* MINUEND
JSR FSUB ; SUBTRACT MEMORY FROM FACC, DIFF IN FACC
NAME ; F3UBT
FUNCTION: FACC = ARG - FACC
PREPARATION: FACC contains floating point subtrahend

SPECIAL NOTES:

RESULT:
ERROR:
EXAMPLE:

ARG contains floating point minuend

This routine is similar to FSUB. The only difference
is the call to CONUPK- FSUBT .assumes you have already
loaded ARG with unpacked minuend.)

FACC contains fldating point differgnce

?OVERFLOW ERROR if FACC. too big.

JSR FSUBT ; SUBTRACT ARG FROM FACC, DIFF IN FACC

NAME :
FUNCTION:

PREPARATION:

BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN
FADD
FACC = MEMORY + FACC
FACC contains floating point addend
.A = pointer {lsb) to packed floating point addend
.Y = pointer (msb} to packed flocating point addend

' SPECIAL NOTES:

RESULT:
ERRCR:

- EXAMPLE:

NAME :
FUNCTION:

PREPARATION:

SPECIAL NOTES:

?

- KESULT:

ERROR:

EXAMPLE :

I it AL bt

The second addend *MUST* be in VARBANK in :
packed format. FADD calls CONUPK to normalize it.

FACC contains floating‘point sum
?0VERFLOW ERROR if result too big
LDA #<POINTER

LDY #>POINTER
JSR FADD

;SET PQINTER TQ *PACKED* ADDEND
;ADD MEMORY TQ FACC, SUM IN FACC

S Yy Ty =

FADDT
FACC = ARG + FACC

FACC contains floating point addend

ARG contains' floating point addend
ARISGN ($70) contains EOR{FACSGN,ARGSGN)
A contains FACEXP

This routine is similar to FADD. The only
difference is the call to CONUPK.)

KX KKK KTk Kok ok okododk k&K Ik ek ok koo vk ok e K 3 I o ke o ok e ok e i e e o

* You *MUST* put resultant sign in ARISGN. *
* You *MUST* load FACEXP ($63) immediately *

* before call so that status flags are set! *
IR R RS ERE SRS E TR SRR R LS TR R E R R R R R R R IR T

FACC contains floating point sum

POVERFLOW ERROR if result too big

LDA FACSGN ' _ s
EOR - ARGSGN _

STA ARISGN ;SET RESULTANT SIGHN

LDA FACEXP ;SET STATUS FLAGS PER FACEXP
JSR FADDT

;ADD ARG TO FACC, SUM IN FACC

2/25/91

BASIC 10.0 MATH PACKAGE

NAME:
_FUNCTION:

PREPARATION:

SPECIAL NOTES:

RESULT:
ERROR:
EXAMPLE:

NAME ;
FUNCTION;

PREPARATION:

SPECIAL NQTES:

b
RESULT:
-ERROR:
EXAMPLE:

***PRELIMINARY* ** F'.BOWEN 2/25791

FMULT
FACC = MEMORY * FACC

FACC contains floating point multiplier
-A = pointer (lsb) to packed floating point multiplicand .
.Y = pointer (msb) to packed floating point multiplicand

The multiplicand *MUST* be in VARBANK in ‘
packed format. FMULT calls CONUPK to normalize it.

FACC contains floating point product
?0VERFLOW ERROR if result too big
LDA #<POINTER

LDY #>POINTER
JSR FMULT

#SET POINTER TO *PACKED* MULTIPLICAND
;MULTIPLY MEMORY BY FACC, PRODUCT IN FACC

FMULTT
FACC = ARG * FACC

FACC contains floating point multiplier
ARG contains floating point multiplicand

This routine is similar to FMULT. The only difference
is the call to CONUPK- FMULTT assumes you have already
loaded ARG with unpacked multiplicand.}

FACC contains floating point product

?0VERFLOW ERROR if result too big

JSR FMULTT sMULTIPLY ARG BY FACC, PRODUCT IN FACC

BASIC

NAME ;
FUNCTION:

PREPARATION:

SPECIAL NOTES:

RESULT:
ERROR:
EXAMPLE:

NAME :
FUNCTION:

PREPARATION:

SPECIAL NOTES:

Ry

RESULT:
ERROR:
EXAMPLE:

10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN 2/25/91
FDIV :
FACC = MEMORY / FACC
FACC contains floating point divisor
A = pointer (lsb) to packed floating point dividend
.Y = pointer (msb) to packed floating point dividend

The dividend *MUST* be in VARBANK in
packed format. FDIV calls CONUPK to normalize it,

FACC contains fleoating point quotient
?DIVISION BY ZERC ERRCR if FACC zero
LDA #<POINTER '

LDY #>POINTER
JSR FDIV

;SET POINTER TO *PACKED* DIVIDEND .
;DIVIDE MEMORY BY FACC, QUOTIENT IN FACC

FDIVT
FACC = ARG / FACC

FACC contains floating point divisor

ARG contains floating point dividend
ARISGN (S70) contains EOR (FACSGN, ARGSGN)
A contains FACEXP

This routine is similar to FDIV. The only difference
is the call to CONUPK- FDIVT assumes you have already
loaded ARG with unpacked dividend.)

e d I de R XN K K e N Yk ke ok ek e ke de o K N e ke e e ok ok ke ke ek o e g g de ok ke ke ke o

* You *MUST* put resultant sign in ARISGN. *
* You *MUST* load FACEXP ($63) immediately *

* before call so that status flags are set! *
(2 A A AR RRERSE RS E RS LT F IRy TSR

FACC contains floating point quotient
?DIVISION BY ZERO ERROR if FACC zero *

LDA FACSGN

EQR ARGSGN

STA ARISGN ; SET RESULTANT SIGN

LDA FACEXP :SET STATUS FLAGS PER FACEXP

JSR FDIVT ;DIVIDE ARG BY FACC, QUOTIENT IN FACC

BASIC 10.0 MATH PACKAGE

NAME :
FUNCTION:

PREPARATION:
RESULT:
EXAMPLE:

***PRELIMINARY* x* I .BOWEN

NEGOP
FACC = -FACC

4

(invert sign of FACC)

FACC contains floating point number

FACC contains floating point number with sign inverted

JSR NEGOP

;FACC = ~FACC.

2/25/91

NAME ; 1.0G ‘

FUNCTION: FACC = LOG(FACC) natural logarithm {base e).
PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point logarithm

ERROR: ?ILLEGAL QUANTITY ERROR if FACC negative or zero -
EXAMPLE : JSR LOG :FACC = LOG(FACC) | '
NAME : INT

FUNCTION: FACC = INT(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point greatest integer
EXAMPLE: JSR INT ;FACC = INT(FACC)

NAME : S0OR

FUNCTION: FACC = SQR(FACC)

PREPARATION; FACC contains floating point number

RESULT: ‘ FACC contains floating peoint square root

ERROR: ?ILLEGAL QUANTITY ERROR if FACC negative

EXAMPLE: J3R SQOR ;FACC = SQR (FACC)

BASIC 10.0 MATH PACKAGE

NAME :
FUNCTION:

PREPARATION:

SPECIAL NOTES:

RESULT:

ERRQOR:

EXAMPLE:

. NAME:

FUNCTION:
PREPARATION:

SPECIAL NOTES:

NAME:
FUNCTION:

PREPARATION:
RESULT:
ERROR:
EXAM?LE:

***PRELIMINARY* * * F .BOWEN 2/25/91
FPRR

FACC = ARG ~ MEMCRY

ARG contains floating point number’ . .
.A = pointer {lsb) to packed floating point power
.Y = pointer {msb) to packed fleoating point power

The power *MUST* be in ROM or SYSTEM RAM in packed
format as FPWR calls MOVEFM to unpack it into FACC..

FACC contains floating point result

?ILLEGAL QUANTITY ERROR if ARG negative
P70VERFLOW ERROR if result too big

LDA #<POINTER
LDY #>POINTER
JSR FPWR

#SET POINTER TC *PACKED* POWER
- ;COMPUTE ARG “ MEM, RESULT IN FACC

FPHRT
FACC = ARG "~ FACC

ARG contains floating point number
FACC contains floating point power
LA contains FACEXP

This routine is similar to FPWR. The only difference
is the call to MOVFM- FPWRT assumes you have already
loaded FACC with unpacked power.

LR AR R EE R SR SRS R LT TR EERE R TR SR T R R LR g pe g

* You *MUST* load FACEXP ($63) immediately *

* before call so that status flags are set! *
LSRR AL R EREEEER RS SRR LR R ERE R LR R T g

FACC contains floating point result

?ILLEGAL QUANTITY ERROR if ARG negative
POVERFLOW ERROR if result too big

Lba FACEXP
JSR FPWRT

;SET STATUS FLAGS PER FACEXP
; COMPUTE ARG ~ FACC, RESULT IN FACC

EXP (compute e ~ FACC)
FACC = EXP (FACC))

FACC contains floating point number
FACC contains floating point.resﬁlt_
?0VERFLOW ERROR if FACC too big

JSR EXP ;FACC = EXP (FACC).

BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN

NAME, =
FUNCTION:

PREPARATION:
RESULT:
EXAMPIE:

NAME:
FUNCTION:

PREPARATION:
RESULT:
EXAMPLE:

NAME :
FUNCTION:

PREPARATION:
RESULT:-
EXAMPLE:

NAME :
FUNCTION:

PREPARATION:
RESULT:
EXAMPLE:

COs
FACC = COS (FACC)

FACC contains floating point number

FACC contains floating point cosine {in radians)

JSR COS ;FACC = COS (FACC)
SIN

FACC = SIN(FACC)
FACC contains floating point number

FACC contains floating point sine (in radians)

JSR SIN :FACC = SIN(FACC)
TAN

FACC = TAN(FACC)
FACC contains floating point number

FACC contains floating point tangent (in radians)

JSR TAN :FACC = TAN(FACC)
ATN

FACC = ATN(FACC)
FACC contains floating point number

FACC contains floating point arctangent (in radfans)

JSR ATN ;FACC = ATN(FACC)

2725791

BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN 2/25/91

NAME:
FUNCTION:

PREPARATION:
RESULT:

EXAMPLE:

JAME 3
FUNCTION:

PREPARATION:
RESULT:
EXAMPLE:

NAME :
FUNCTION: ,

PREPARATION:
RESULT:

EXAMPLE:

ROUND {round to 40 bits of precision)
FACC = FACC + FACQOV(msb) :

FACC contains floating point number
FACOV (msb) contains ‘extra’ precision

none if FACC zero or FACOV (msb) zero
one extra bit ADDED to FACC lsb if FACOV (msb) is set

JSR ROUND ; ROUND FACC

T I T I T e T e S e T e I e T e ST e I e 2 e I e T I e T e s S e T e T T e T e) e S T e Y e I e e e S e

ABS ' (make FACSGN (msb) = $00)
FACC = ABS (FACC)

FACC contains {SIGNED} floating point number
FACC contains (POSITIVE) floating point

JSR ABS :FACC = ABS (FACC)

SGN {(test SIGN of FACC)
.A = SGN(FACC)

FACC contains floating point number

.A ==> SFF if FACC negative (FACC <)
S00-1if FACC zero {(FACC = Q)
$01 if FACC positive (FACC > 0)
(status flags reflect contents of .A, carry invalid)

JSR SGN : SGN (FACC)
; BEQ will trap =0
BNE will trap <>0 '

BMI will trap <O
BPL will trap >=0 etec.

LR TR T

BASIC 10.0 MATH PACKAGE ***PRELIMINARY*** F.BOWEN 2/25/91

NAME :
FUNCTION:

PREPARATION:

SPECIAL NOTES:.

RESULT:

EXAMPIE:

NAME ;
FUNCTION:

PREPARATION:
>

SPECIAL NOTES:

RESULT:
EXAMPIE:

FCoMP (compare FACC with MEMORY)
.A = FCOMP (FACC, MEMORY) '

FACC contains floating point number
A pointer (lsb) to packed floating point number
+¥ = pointer (msb) to packed floating point number

[}

The number *MUST* be in ROM, or RAM currently in context
below ROM, in PACKED format. *** FACOV is significant!

A --> $FF if FACC < MEMORY
$00 if FACC = MEMORY
$01 if FACC > MEMORY -
{status flags reflect contents of A, carry invalid)

LDA #<POINTER

LDY #>POINTER :SET POINTER TO *PACKED* NUMBER

JSR FCOMP ; COMPARE FACC WITE MEMORY

BEQ will trap FACC = MEM

BNE will trap FACC <> MEM

BMI will trap FACC < MEM

BPL will trap FACC >= MEM etc,

e We Wy wa

RNDO :
FACC = random floating point number {0<n<l)

-A ~-> 500 to generate a ’‘true’ random number
$01 to generate next random number in sequence
3FF to start a new sequence of random numbers
based upon current contents of FACC.

MUST be called with the system bank in context.
MUST load .A immediately before call so that status
flags reflett contents of .A

FACC = floating point random number

LDA #SEF i START REPRODUCEABLE SEQUENCE BASED ON FACC
JSR RNDO '
LDA #3501 '

JSR RNDO - ;GENERATE (FIRST) RANDOM NUMBER IN SEQUENCE

Pt

- BASIC 10.0 MATH PACKAGE ***PRELIMINARY**%* F .BOWEN 2/25/91

NAME: - CONUOPK
FUNCTION: ARG = UNPACK(RAM_CONSTANT)
PREPARATION: A pointer (lsb} to packed fleoating point number

.Y pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in VARBANK or SYSTEM RAM in packed format.

RESULT: ARG loaded with normalized floating point nuﬁber
ARISGN ($6F) contains EOR (FACSGN, ARGSGN) , _
JA contains FACEXP (status reflects contents of .A)

EXAMPLE: LDA #<POINTER) :
LDY #>POINTER ;SET POINTER TO *PACKED* NUMBER
JSR CONUPK : LOAD ARG :
: BEQ traps ARG = $00

e e e e T e e e e e e e e e e T e e e e e S - - - e e e = e e i e T e Sma st —

NAME,: - ROMUPK

FUNCTION: ARG = UNPACK(ROM_CONSTANT)

PREPARATION: .A = pointer (lsb) to packed floating point number
-1 = pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in ROM or SYSTEM RAM currently in context
{otherwise identical to CONUPK).

RESULT: ARG loaded with normalized floating point number

ARISGN ($S6F) contains EOR(FACSGN, ARGSGN)

A contains FACEXP (status reflects contents of .A)
EXAMPLE: LDA #<POINTER

LDY #>POQINTER :SET POINTER TO *PACKED* NUMBER

. JSR ROMUFPK : LOAD ARG .
? _ ; BEQ traps ARG = $00

NAME,: MOVERM
FUNCTION: FACC = UNPACK (RAM CONSTANT) _
PREPARATION: A pointer (lsb) to packed floating point number

Y pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in VARBANK or SYSTEM RAM in packed format.

RESULT: " FACC loaded with normalized floating point némber
FACOV ($71) cleared

EXAMPLE: LDA #<POINTER '
LDY #>POINTER +SET POINTER TO *PACKED* NUMBER
JSR MOVERM :LOAD FACC

BASIC 10.0 MATH PACKAGE ***PRELIMINARY**x F.BOWEN

NAME : ' MOVFA

FUNCTION: FACC = ARG :
PREPARATION: ARG contains floating point number
RESULT: FACC contains same number as ARG
FACOV ($71) cleared . '
A contains FACEXP (but status invalid!)
EXAMPLE: JSR MOVFA :COPY ARG TO FACC
NAME : MOVAF
UNCTION: ARG = FACC
PREPARATION: FACC contains floating peoint number
RESULT: FACC will be ROUNDed and FACOV cleared.
ARG contains same number as FACC
A contains FACEXP (but status invalid!)
EXAMPLE: JSR MOVAF :COPY FACC TO ARG

*xx End of MATH ROUTINE documentation **x

1 2/25/91

C64DX DOS : ***PRELIMINARY ** * F .BOWEN 2/25/91

3.5 C&5 DOS Documentation

DIRECTORY HEADER DEFINITION

R D D L (S T S s T st S Sk] T - " - o ———

CUP L S L Y T e e T T 1 T . S T ol s D S . vl . W el S . B . . A T b . . . 4w . W A e e w400 o

1 SECTOR number which points to the 1lst dir. sector
2 Disk format version number, which is currently ‘D’
512 byte sectors 20 per track
20 Sectors per track
40 Tracks per side
2 sides (note they’re inverted from normal MFM dsk)
3 Must = 0
4 Bytes 4 thru 21 contain the volume name (label)
22 Bytes 22 and 23 contain the disk id (fake)
24 Must contain an 3A0 -
25 DOS version number (CBDOS = 1, 1581 = 3
26 Format version number (currently = ‘D’ (fake)).
27 Bytes 27 thru 28 = SAQ ' '
29 NOT USED AT THIS TIME
30 NOT USED AT THIS TIME
30 NOT USED AT THIS TIME
32 NOT USED AT THIS TIME
33 ©NOT USED AT THIS TIME
34 Track number which points to this directory header
35 Sector number which points to this directory header
36 Bytes 36 thru 255 are not used at this time

NOTE: If this is a subdirectory header then BYTES 32 and 33 contain the
TRACK & SECTOR number of the DIRECTORY SECTOR that points to this DIRECTORY
HEADER. 'See the partition command for a better discription. If this is the
ROOT header then they will contain a $00,

"

C64DX DOS

. ***PRELIMINARY***

BAM DEFINITION

F.BOWEN

2/25/91

- ——

a——-———-«-——-----———q—oo———--u—-—-—-—————-—————————q--u——p_-n—

Track link for next bam sector, if last then end of bams
Sector link .
Format type this disk was formatted under
Compliment version number of byte 2 ahove
3 Disk ID used when this disk was formatted
I/0 byte used as follows: _
BIT 7 - When set Verify is performed after each disk write.
BIT 6 ~ Perform CRC check (not used by CBDOS)
BIT 1 - Huge relative files disabled
Auto loader flag {(not used by CBDOS)
15 Not used at this time by any CBM DOS versions
- 255 BAM image

—m——q---u—————.-—--———pﬁ-———--—u——---—-—n_——--—--——-m-——-——-u-—-—-—_--.-——.-

—-.n._——-——_—.-.-u.———-——-.--....n-—-_.————-—u.-——_—---_—_—_——.——_————-..-.-—_—---——n-———-————

Number of
MSB flag
M3B flag
MSB flag
MSB flag
MSB flag

free sectors on this track

for
for
for
for
for

sector 7,
sectorl5s,
sector23,
sector3l,
sector39,

LSBE flag for
LSB flag for
LSB flag for
LSB flag for
LSB flag for

sector 0
sector 8
sectorlé
sector24
sector32

C64DX DOS *x*PRELIMINARY *** . F . BOWENR 2/25/91 W

DIRECTORY SECTOR DEFINITION

T AR i Sy e g S D T 2 A S Y - S 0 A A T T T A T

BYT BIT DESCRIPTION
0 TRACK «- Points to the next directory track.
1 SECTOR-- Points to the next directory sector.

[IF TRACK = (0 THEN THIS IS THE LAST DIRECTORY SECTOR]

FILE ENTRY DESCRIPTION

L — - " " iy T S — — ——— — . W Sa . YD i T 2 T T A . . S " 4o Al T S T . S A b

BYT BIT DESCRIPTION
0 File status byte which is used as follows:;
7 Set indicates properly closed file
6 File is locked {(read only)
5 Save with replace is CURRENTLY in effect,
when file is closed this bit is deleted.
4 NOT USED AT THIS TIME .
X Bits 3 thru 0 are used to indicate the filetype

0 =DEL, 1 = SEQ, 2 = PRG, 3 = USER, 4 = REL, 5 = CBM, 6 =not used
7 = used by dos to represent DIRECT type of file access
TRACK ~ link to the 1lst sector of data for this Ffile.
SECTOR - link to the lst sector of data for this file.
Bytes 3 thru 18 contain the filename in ASCII, padded with S$AO
Side Sector TRACK link for relative files
GECS - Track number of GEQOS file header
20 Side Sector SECTOR link for relative files
GEOS - Sector number of GEQS file header
21 Record size for relative files
GEQCS - File structure type 0 = seq, 1 = VLIR
22 GEOS - FILE TYPES: ,

» 13= Swap file 12= System boot 11= Disk device 10= Input device
0%= Printer 08= Font 07= Appl. data C6= Applications
05= Desk Acc. 04= System 03= Basic data 02= Assembly

: 0l= Basic 00= Not GEO0S
23 Not used by CBM DOS previous to CBDOS
GEQS - DATE: Year last modified (offset from 1990) :
CBDOS- Bits 7-4 contain the upper 4 bit’s from the file type byte
(see byte 0 above) for the UNNEW, UNSRATCE commands used by CBDOS
24 Not used by CBM DOS previocus to CBDOS
GEQS - DATE: Month last modified (1 thru 12)
CBDOS- Bit’s 7 thru 4 contain the lower 4 . .
bit's from the file type byte (see byte 23 above)

W0 WM

25 GEOS - DATE: Day last modified (1 thru 31)
26 TRACK (from 1) for the save with replace file
‘ GEOS - DATE: Hour last modified (0 thru 23)
27 . SECTOR (from 2) for the save with replace

GEOS - DATE: Minute last modified (0 thru 59)
28 L5B of the # of sectors used by this file
29 MSB of the # of sectors used by this file

NOTE: Each sector in the directory contains 8 entries of 32 bytes each

C64DX DOS ***PRELIMINARY * * * F .BOWEN

SIDE SECTOR FORMAT DEFINITION

——.n—----—————-—---—.—n—————--—.———————-—«-—--————_—n—-—-—-n-——---———.-——u——-p—-

o L)

LI O Y N N I A |

10
12
14
16
18

~3un

9

11
13
15
17

etc...

DESCRIPTION
Next Side Sector TRACK link ($FF if last)
Next Side Sector SECTOR
Side Sector number
If this is a SUPER SIDE SECTOR then this contains an 'SFE
(see the description of the SUPER SIDE SECTOR below)
Record Size -

TRACK & SECTOR link of Side Sector number 0
TRACK & SECTOR link of Side Sector number 1
TRACK & SECTOR link of Side Sector number 2
TRACK & SECTOR link of Side Sector number 3
TRACK & SECTOR link of Side Sector number 4
TRACK & SECTOR link of Side Sector number 5
TRACK & SECTOR link of the DATA BLOCK #0

TRACK & SECTCR link of the DATA BLOCK #1

NOTE: There are 91 groups to the largest file that this DOS can handle.

SUPER SIDE SECTOR FORMAT DEFINITION

——— - e o o o o o o o T k. L D . i . e o A D k. . . S B il T T " 2 T T T P

o —

10
12
14
254

T e R R e e . S o o g . 1 . " N k. e . . T i . 7

Next Side Sector TRACK link ($FF if last)
Next Side Sector SECTOR

Contains an S$FE to indicate this is a SUPER SIDED SECTOR

‘TRACK & SECTOR link of Side Sector number 0

» TRACK & SECTOR link of Side Sector number 1
TRACK & SECTOR link of Side Sector number 2
TRACK & SECTOR link of Side Sector number 3
TRACK & SECTOR link of Side Sector number 4
TRACK & SECTOR link of Side Sector number 5
TRACK & SECTOR link of Side Sector number 125

NOTE: There are 91 groups to the largest file that this DOS can handle.

T N S e . S Ul S L L g S T W A B . . A e i o — . o —— " . " s s

—

DATA SECTOR DEFINITION

- —————

TRACK and’ SECTOR link to the next data block. If track = 0

2725791

then sector contains the number of bytes used in this sector

(which will always be at least 2 on the last block for the
T&S link bytes).

NOTE: Used by DEL, SEQ, PRG, REL (data blocks) and USR

Te My %a Na %a Ny Ny % e

% e By e % %a W Wa

We Mg Ng Wa Mg wg Wy

C64DX DOS - ***PRELIMINARY*** F.BOWEN 2/25/91

!
1
]
*

¥

;* Format a track
;* 10 sectors per track numbered 1-10, 512 byte sectors

*

---n-w------.—----»q----n--l--l---.---bu--.---------'m---------—-.----.-.

:* 12 Sync marks 0]4] *
: ¥ 3 Header ID marks w/missing clock Al *
i* 1l Headexr ID FE *
¥ 4 Header bytes Track *
:* : Side *
i* Sector *
:x Sector size - *x
:* 2 Header CRC bytes XX, Xx ’ *
;* 22 Data gap bytes ' 4E *
:* 12 Sync marks Q0 *
HR 3 Data block ID marks w/mxss;ng clock Al *
i 1l Data block ID _ FB *
:* 512 Data block fill bytes 00 *
:}* 2 Data block CRC bytes , XX, RX *
. X *

24 Sector gap bytes 4E

;* Calculate the 2 byte CRC for each sector header of an entire track *
;* of 10 sectors. AXYZ are trashed. *
* . _ *
* This routine is based on the Cyclical Redundancy Check on the *
* polynomial: A~16+A"12+A"5+1, *
* *
* HEADER contains TRACK, SIDE, SECTCR,2 [sector size] *
*) *x
* DO WHILE ne = 0 *
* DO FOR each bit in the data byte (.a) [from lsb to msb] *
x IF (LSB of crc} EOR (LSB of data) *
* > THEN CRC = (CRC/2) EOR polynomial *
* ELSE CRC = (CRC/Z) *
* FI *
* Loop - x
* LoOoP *
K ot e e o e v e i = i 4 e e e e e e e e e ey e e e e A o A e S e e o e *
B o e e e o e e e e e e i e 2 e e e e e e e e e o e *x
* SIDE = (LogicalSector >= 20Q) AND 1 *
* TRACK = LogicalTrack -1 *
* StartingSector = SIDE * 20 4 *
* SECTOR = (LogicalSector - StartlngSector) /2 +1 *
* HALF = {LogicalSector - StartingSector) AND 1 *
K o 1 e e o . . £ o % e e o g - ——— - - X

Some legal commands:

C64DX DOS ***PRELIMINARY * * * F.BOWEN . 2/25/91
C65 Partition and Subdirectory Syntax | 910212 Fred Bowen

This specification describes a proposed €65 partition/subdirectory parser.

OPEN la,fa,sa, "[#]/path/:filename"® -
OPEN 1la,fa,l5, "<cmd>#/path/: {cmd_string]™

where: $ ' is an optional "drive" number, 0-9,
/path/ is a partition or subdirectory name
H delimits the path from the filename

and: <cmd> is a DOS command (such as I,N,5,C, etc.)
(emd_string] is an optional string required by some commands.

The first example illustrates a typical filename specification, the second
example illustrates a command channel instruction.

OPEN la, fa, sa, "OISUBDIRIISUBDIRZ/:FILE,S,W"
Action taken Why

...———._——————————-*-—q.-----_--——qp--——-—n Tl e D e o i W . e S P . . . b

2. Find & enter two subdirectories /SUBDIR1/SUBDIRZ/:
(the trailing "/" is required

to be compatible with CMD?)
3. Create & open file for writing FILE,S,W :

The "root" or "drive number", path, and ":" are all optional. If they are

omitted, the file is opened in the current partition. Some similar, and legal,
syntaxes are: ‘

OPEN la,fa,sa, "FILE,S,W" {create "FILE" in current part)
OPE’» la, fa,sa, ":FILE,S,W" {(create "FILE" in current part)
OPEN 1la, fa,sa, "0:FILE,S,W" (create "FILE™ in current part)
OPEN la, fa,sa, "/SUBDIR/:FILE,S,W" (from current partition, enter
. "SUBDIR" and create "FILE™)
OPEN la,fa,sa, "//SUBDIR/:FILE,S,W" (from Root partition, enter
- "SUBDIR"™ and create "FILE")
CPEN la, fa,sa, "@0/SUBDIR/:FILE" {open "FILE" in "SUBDIR" for
writing)

Some questionable syntaxes, and their affect, are:

OPEN la, fa,sa, "QOFILE,S,W" (this would create, file "OFILE"™)

OPEN 1la,fa,sa, "/SUBDIR/FILE,S,W" (creates file "/SUBDIR/FILE"™)

OPEN la,fa,sa, "@Q:FILE,S,W" (open file "FILE" in current
partition for writing)

OPEN 1la, fa,sa, "/0:FILE,S,W" (? should create file "0:FILE",

note this is not the cmd chnl)

OPEN la, fa,15, "140" (initialize current partition)
OPEN 1la, fa,15, "1//" {(initialize Root)

CPEN la, fa,15, "IQ/SUBDIR/:" {enter "SUBDIR" and initialize)
OPEN la,fa,15, "NO/SUBDIR/:NAME,ID" (enter "SUBDIR" and “"new" it}
OPEN la,fa,15, "SO/SUBDIR/:FILE" {delete "FILE" in "SUBDIR")
OPEN la,fa,l15, "/0:SUBDIR" - {1581 partition select, "/" in

this context is a command itself)

C64DX DOS * x xPRELIMINARY * * * F.BOWEN 2/25/91

Some proposed general rules, designed to be compatible with both the 1581
subpartitioning syntax and CMD syntax:

1. The name of a subdirectory must always be separated from the
filename by a colon (":").

2. Each subdirectory name must be delimited by a slash ("/"}.
3. To select Root directory (partiton), specify two slashes (“//").

This allows older applications specifying the drive number ("0:™)
to be run in a partition. .

CURRENT PARTITION ROUTINES

lreate Partition: :
"IO:PAR_NAME,“+(START—TRK)+(START-SECTOR)+(LO-BLKS)+(HI-BLKS)

Select Partition: ,
"/0:PAR NAME" will select given filname as subdirectory
/0" will select root directory

SELECT PARTITION

This routine will allow the user to quickly select partition paths using
the normal SA values other than 15. To use this new methoed the user opens
the file using a normal SA and the filename MUST be structured as follows:

"/<drive>:PATH_l/PATH%ﬁ/PATH_B ETC"
If the dos does not find one of the filenames in the file path stream it

will check to see if the file exists in the current directory and if it
deoes it will open the file in the normal method as it does now.

C64DX DOS | *%* *PRELIMINARY ** * F.BOWEN 2725791

:******t***

i FILE_COMMANDS

« %

L

:* The following set of command channel routines were added to allowithe-

user a graceful way of manupilating files:

.
*

"F-L" Locate a file to prevent it from being scratched
"F-U" Unlock a file and allow it to be scratched
"F-R" Restore a file after it has been scratched

then followed by the filename(s). For example, to lock all the files
on drive 0 you would send the following file command:
OPENXX, xX, 15, "F-1L0:*"

or
OPENXX, XX, 15, "F-LO:FNAME, FNAME1,ENAME2, ... etc.

we %u %p e Ny Mp My Ns % Ry W Wy Ny W
* o Ok N % N NN AN N A %

x
*
*
%
x
x
X
*
Following each command above is the drive number, followed by a colon =*
*
*
*
*
*
*
*
¥

-******************************t**

-

-***************************************t***************************

;* BL.OCK STATUS
Syntax : "B-S:CHANNEL NUMBER, DRIVE NUMBER, TRACK, SECTOR"™

Then check error channel for normal errors then get one bhyte
from the channel number. If it is a 0 then the sector is free
1l indicates the sector is in use. :

This command was added to enable an easy method of finding out

if a given track or sector is currently marked as being used in
a drive’s BAM or not. :

Wh e e Np e %a We %g g e e Wa e

B0k ok 3k O Sk M O b F N F 3 % ok % ¥ 3 % % % ¥ W N W N ¥
B % % 4 ok % 2k X F % % % N % A A N % % o H % N N F %

> CBDOS CHGUTIL
; COMMAND COMMENTS _ DRIVES USED ON
i* "U0>B"+chr$(n) b = set fast/slow serial bus 1581
;* "UO>D"+chr${n} d = set dirsecinc CBDQS
:* "UO0>H"+chr$(n) h = set head selection 0, 1 1571
PFO"JO>M"+chrS(n) m = set dos mode 1571
:* "UO>R"+chr$(n) r = set dos retries on errors 1571, 1581
;* "U0>S"+chrS${n) s = set secinc ' 1571,1581,CBDOS
:* "U0>V"+chr${n) v = set verify oN/oFF 1581, CBDOS
:* "U0>?"+chrS{n}) ? = set device number 1571,1581,CBDOS
;* "U0>L"+chrS$ (n) = set large rel files on/off CBDOS ‘
;* "UOS>MR™+ xx = perform memory read 1581
3% "UOOMW"+ xx = perform memory write 1581
: 12345
: At e CMDSIZ points to end of string starting @1*

************t***************************t*************************

-

C64DX DOS

***PRELIMINARY** * F .BOWEN

FLOPPY DISK CONTROLLER ERRORS

Ip
0

20
23
25
26
27

FDC

DESCRIPTION

ey et b A —

(0} no error

(2)
(3)
(7)
(8)
(9)

can’t find block header
checksum error in data
write-verify error

write w/ write protect on
crc error in header

Information description

1 files scratched

2 selected partition
3 files locked

4 files unlocked

S files restored
Parameter errors

30 general syntax

31 invalid command

32 long line

33 invalid filname

34 no filenames given

Relative file errors

Al L L S A b oy, T T e ———

record not present

51

overf

low-in record

52 file too large
353 big relative files disabled

Open routine errors

e L ke S e e e

open for write
not open

not found
exists

type mismatch

Sector management errors

P S ——— A i S S e T W ——————— A} S

65 no block

66
67

illegal track or sector
illegal system t or s !

2/25/91

C64DX DOS

***PRELIMINARY * * *

General channel/block errors

A L — . — D R T — — . i . . " —

channel selected

no channels available
bam corrupted error
disk full

cbhbdos v1.0 .

drive not ready
format error
controller error
slected partition illegal
directory full

file corrupted

F.BOWEN

2/25/91

Ce4DX RS-232 tt*PRELiMINARY*** - F.BOWEN : 2/25/91

3.6 C64DX RS-232 DRIVER

Q0A7 r5232 status

- UART status byte
00A8 rs232_flags

open flag, xon/xoff status

b7: channel open ° {reset)
b6: flow control {1=x-line)
b5: duplex (1=half)

bl: XOFF received

b0: XOFF sent .
system character to xmit

XON character ' {(null=disabled)
XOFF character (null=disabled)

00A9 rs232 jam
00AA rs232 xon_char
00AB rs232_xoff char

| I S R I I O N B |

COBO rs5232_xmit_empty
Q0B1 rs232 rcvr buffer lo
00B2 rs232_rcvr buffer_hl
00B3 rs232_xmit_buffer lo
00B4 rs232 xmit _buffer hi
00B5 rs232_high_water
00Be r5232 low water

xmit buffer empty flag (0—empty)
lowest page of input buffer.
highest page of input buffer
lowest page of output buffer
highest page of output buffer
point at which receiver XOFFs
point at which receiver XONs

0oca rs232 rcvr head
Q0Ce rs232 rcvr tail
00C8 rs232 xmit head
00CA rs232_xmit_tail

pointer to end of buffer
pointer to start of buffer
pointer to end of buffer
pointer to start of buffer

RS=~232 interrupt-driven handler

How it works: when an RS232 channel is OPENed, buffers are flushed, all
flags and states are reset, and the receiver IRQ is enabled. When a byte
is put inte the xmit buffer by BSQUT, the xmit IRQ is enabled. The xmit
IRQ'is disabled whenever the xmit buffer is found to be empty or an XOFF
is receivi® {it is enabled whenever an XON is received). CLOSE will hang
until the xmit buffer is empty, and BSOUT will hang when the xmit buffer
is full. 1IRQs must be allowed by the user at all times (and especially
during BSOUT calls) for proper operation (The RS232 channel will work even
if IRQs are disabled by the user, but thoughput will be reduced to the
frame rate (normal system raster IRQ) and the system can hang forever should
.he xmit buffer become full and BSOUT is called with a byte to xmit). A

"sucessful CLOSE will disable all RS232 interrupts and re—init everything.

Note that DOS calls disable both IRQ and NMI interrupts while the DOS code
is in context. The remote should be X0FFed to avoid loss of data.

Refer to the UART specification for register description & baud rate tables.

Open an RS-232 channel
This is different from the usual C64/Cl28 command string.

. 1 2 3 4 5 6
Command string bytes: baud|wordiparity|stop (unused) {duplexixline

System Specification for C65 Fred Bowen March 1, 1991,

4.0 C64DX DEVELOPMENT SUPPORT

Please photocopy the attached ’C64DX PROBLEM REPORT’ and
use it to report any problems.

If you have any requests or recommendations, pleése send
a good description of it and explain why you want it,

C64DX PROBLEM REPORT

Date

Please'complete this form as compleiely as possible and mail or express it to:

Commodore Business Machines, Inc. Teilephone: 215-431-9427
1200 Wilson Drive Fax: 215-431-9156
West Chester, PA 19380 Email: fred@ebmvax.commodore.com -
Attention: Fred Bowen, Engineering
Company Name
Company Address
Your Name Your Phone
Your system
Serial No. PCB rev Software ver ROM Cksum
4510 rev 4567 rev FOll(DOS)V F018 (DMA)
Peripherals: .

Your problem

Co4 mode

>»
C64D¥ mode
Hardwarxe
Software
Mechanical
Documentation

Compatibility

It happens:

all the time

Explain problem here and show how to cause it. Attach sample program.

frequently occasionally

In your opinion, how

Check here if you need to be contacted

bad is the problem?

Must fix, no workarcund
I can work around it

Minor problem

Please leave this space blank

Number

Received

Contacted Completed

Use this space for additional comments or program listing

C64DX System Specification UPDATE ' F.BOWEN 5/1/91

*

The Monitor parser now allows PETSCII input/conversion:

-\ _ prints ASC{) wvalue of character
>1800 "text R puts text into memory
LDA #'A '

IRQ runs during graphics (Kernel finds its own base page). IRQ

still does not run during DOS activity (not sure if they ever will).

The following Kernel Jump Table Entries have moved (and are still
subject to further changes):

FFQ5 nirg ;IRQ handler
FEQ7 monitor brk ;BRK handler (Monitor)
FEO09 nnmi ;NMI handler
TFOB nopen " :open

FEOD nclose ;close

T 0F - nchkin ;chkin

TFlli nckout : ckout

Frl3 nclrch) ;clxch

FF15 nbasin ;basin

FEl7 nbsout :bsout

FTF19 nstop ;stop key scan
FF1lB ngetin ;getin

FF1D nclall ;clall

FF1F monitor_parser ;monitor command parser
FF21l nlocad :load '
FF23 nsave ;save

FF25 talk _

FF27 listen

FF28 talksa

Fr2B second

FE2D acptr

FF2F ciout

FE31l untalk

.FF33 unlisten

FE35 DOS_talk
FF37 DOS_listen

- FF39 DOS_talksa
FE3B . DOS_second
FF3D DOS_acptr
FE3F DOS_ciout
FFr4l DOS_untalk .
FF43 DOS_unlisten

FF45 Get_DOS

FE47 Leave_DOS

FF49 ColdStartD0S <<< new
FF4B WarmStartDOS '<<< new

C64DX System Specification UPDATE

Notes

1/

2/

3/

4/

2.1.2 Gexrman/Austrian Keyboard Layout

RUN ESC |ALT {asc | wo "F1 | F3 | F5 | F7 F9 | F11| F13|HELP
STOP pIN Isern| 1 F2 | F4 | F6 | F8 F10| F12| F14|
sl b lesis s e |7/ ¢ 1 = 9} | +lcir |iNsT
-<| 1 2 3 4 5) 7 g 9 0 o+ 8 - *| £ [|HOME|DEL
TAB z g *{ n \| RSIR
o iw |E |R JT Y |JUu |1 o le (@& |*+]
CTRL|SHFT [6]] & *| RETURN
' ock| A | s [p |F {6 |BH |3 |x J1 |: s =3
C= |SHIFT Y < ;| s :| 2 _|surFT |CRSR
z X ol \'l B N M . / - t
SPACE CRSR|CRSR|{CRSR
- $ -+

The operation of national kevboards is’identidal te C1l28 implementation.
The ASCII/DIN key replaces the CAPS LOCK key, and can be toggled anytime
to switch keyboard modes and automatically change the display.

The national keyboard contains key legends for both national and ASCII
modes. The national legends appear on the right top/bottom of the keys.

4
The German keyboard has three (3) "deadkeys." They are accent d’ aigue,
accent grave, and accent circonflex. Pressing the "deadkey” followed by
a valid vowel or accent character will ’‘build’ the desired character:

accent d’aigue: é
accent grave: a,
accent circonflex: a,

ey

e,
é 1, 0, 1

National character ROM graphic characters differ from the C64 and ASCII
{English) graphic character sets. ‘

X

F.BOWEN 5/1/81

C64DX System Specification UPDATE F.BOWEN 5/1/91

PAINT x, y [,color}

Working, but not completely to spec. Uses draw pen
color and fills emptyness to any border. :

RND (0) Improved for better "randomness"™. Uses unused POT:
of second SID chip., PCB must allow lines to float.

SET DISK # (without [TO #] parameter) allows user to clear DSS
message and specify which drive next DS5 comes from.

SET VERIFY <ON|OFF>

The new DOS65 defaults to verify-after-write OFF.
This command works with 1581 drive, too.

Negative Coordinates are now allowed for all graphics commands. Some
commands require their arguments to be "onscreen"; such as PAINT.

BASIC errors now force text mode, and TYPE, LIST, DISK, KEYLOAD,

‘LOADITF now catch all DOS errors. Autoboot filename= AUTOBOOT.C64DX.*

Opening an RS?232 channel, command string allows setting new features:

1 baud (0-16, where 16=MIDI rate)

2 word len

3 parity

4 stop bits (not used)

5 duplex :

6 xline

7 -xon char (O=incoming flow control disabled)

8 xoff char (O=outgoing flow control disabled)
8,10 input buffer pointer (page lo, hi)

11,12 ocutput buffer pointer (page 1o, hi)

i3 high water mark (point at which xoff is xmitted)
14 low water mark (point at which xon is xmitted)

For debug purposes, the border color will change if arf RS232 buffer
overflow occurs. To differentiate between a GET# of a null and a.
‘no data’ null, test bit 3 of STatus (same as C§4).

Support for latest DOS controller chip, F011D, includes error LED
blink (border color still changes too, for now). Changes to improve
FASTLOAD speed and improve SAVE speed. Will work with F011C chip,
but error LED does not blink. Requires latest 'ELMER’ PAL for disk
LED to work correctly for either controller chip. External drive LED
will not work correctly until new PCB & FO0l6 chip are designed. New
DOS functions include COPY DO TO D1, ability to change sector skews
for files (UO>5#) .and directory (U0>D#), and directory compress
(i.e., empty trash) via "E" command. Physical interleave is now 7.

The DOS COPY/CONCAT bugs have been fixed, and COPY now allows forms
such as CoPY DO,“*-SRC" TO Dl,"*" - and coPY Do;"*"‘SEQ" TO Dl,"*“.
Directory/partition paths not yet implemented, but will be.

C64DX System Specification UPDATE ‘ F.BOWEN 5/1/91

The following changes/updates/fixes have been made to the CH#4DX ROM
code since the March 1, 1991 C64DX System Specification was printed.
Please make note of them. Current ROM as of this update is 510301.

CHAR Now works to spec and supports the following imbedded
control characters (although some are buggy:; others
are planned): . o

AF 6 flip
~I S invert
~0 15 overwrite
R 18 reverse field on
146 reverse field off
~U 21 underline
S ¢ 25 tilt
~2 26 mirror

When specifying a character set from ROM, note that
national versions of the C64DX will have the natioenal
character set at $39000 and the C64 character set at
$3D000. In US/Englisn systems, the default C64DX-mode
character set will be at $39000.

CLR ERRS Clears BASIC error stuff, useful after a TRAP

CURSOR [<ON|OFF>,] [column] [,row] [,style]
where: column,row = X,y logical screen position
' style = flashing (0) or solid (1)
ON, OFF = f£o turn the cursor on or off

LINE x0, v0 [,ix1] (,¥1ll...
where: (x1,yl)=(x0,y0) if not specified, drawing a dot.
Additional coordinates (x2,y2), etc. draw a line from
the previous peoint.

LOADIFF "file" [,U#,D#] -
Loads an IFF picture from disk. Requires a suitable
graphic screen to be already opened {tHis may change).
The file must contain std IFF data in PRG file type.
IFF pics can be ported directly from Amiga (eg., using
XMODEM) . Returns ‘File Data Error’ if it finds data
it does not like. :

MOD (number, modulus)
New function.

£

MOUSE ON [, [port] [,[sprite] [, [hotspot] [,X/Yposition] 1]]

MOUSE OFF . .
where: port = (1...3) for joyport 1, 2, or either (both)
sprite = (0...7) sprite pointer
hotspot = x,y offset in sprite, default 0,0
position = normal, relative, or angluar coordinates

- Defaults to sprite 0, port 2, last hotspot (C,0), and
position. Kernel doesn’t let hotspot leave the screen.

